Browse Source

fix tests and report

main
wesley 5 months ago
parent
commit
1790adbd74
7 changed files with 32 additions and 317 deletions
  1. +0
    -5
      CMakeLists.txt
  2. BIN
      assets/latency.png
  3. BIN
      assets/randvalu_2.png
  4. BIN
      assets/randvalue.png
  5. +1
    -1
      include/leveldb/options.h
  6. +31
    -31
      test/test_bench.cc
  7. +0
    -280
      test/test_bench_gc.cc

+ 0
- 5
CMakeLists.txt View File

@ -551,8 +551,3 @@ add_executable(test_bench
"${PROJECT_SOURCE_DIR}/test/test_bench.cc"
)
target_link_libraries(test_bench PRIVATE leveldb gtest)
add_executable(test_bench_gc
"${PROJECT_SOURCE_DIR}/test/test_bench_gc.cc"
)
target_link_libraries(test_bench_gc PRIVATE leveldb gtest)

BIN
assets/latency.png View File

Before After
Width: 1643  |  Height: 654  |  Size: 414 KiB

BIN
assets/randvalu_2.png View File

Before After
Width: 1348  |  Height: 817  |  Size: 50 KiB

BIN
assets/randvalue.png View File

Before After
Width: 1348  |  Height: 818  |  Size: 63 KiB

+ 1
- 1
include/leveldb/options.h View File

@ -101,7 +101,7 @@ struct LEVELDB_EXPORT Options {
size_t block_size = 4 * 1024;
// Threshold of value size that decide whether to separate the key and value
size_t kv_sep_size = 1;
size_t kv_sep_size = 1000;
// Number of keys between restart points for delta encoding of keys.
// This parameter can be changed dynamically. Most clients should

+ 31
- 31
test/test_bench.cc View File

@ -11,7 +11,7 @@ using namespace leveldb;
// Number of key/values to operate in database
constexpr int num_ = 100000;
// Size of each value
constexpr int value_size_ = 500;
constexpr int value_size_ = 1000;
// Number of read operations
constexpr int reads_ = 100000;
// Number of findkeysbyfield operations
@ -33,8 +33,8 @@ void InsertData(DB *db, std::vector &lats) {
bytes_ = 0;
int64_t bytes = 0;
srand(0);
std::mt19937 value_seed(100);
std::uniform_int_distribution<int> value_range(500, 2048);
// std::mt19937 value_seed(100);
// std::uniform_int_distribution<int> value_range(500, 2048);
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
@ -42,8 +42,8 @@ void InsertData(DB *db, std::vector &lats) {
for (int i = 0; i < num_; i++) {
int key_ = rand() % num_+1;
int value_ = std::rand() % (num_ + 1);
int value_size = value_range(value_seed);
std::string value(value_size, 'a');
// int value_size = value_range(value_seed);
std::string value(value_size_, 'a');
std::string key = std::to_string(key_);
FieldArray field_array = {
{"1", value},
@ -58,9 +58,9 @@ void InsertData(DB *db, std::vector &lats) {
last_time = end_time;
lats.emplace_back(latency);
if (value_size < 1000) {
key_set.insert(key_);
}
// if (value_size < 1000) {
// key_set.insert(key_);
// }
}
bytes_ += bytes;
}
@ -231,12 +231,12 @@ TEST(TestBench, Throughput) {
// std::cout << "Throughput of Get(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << "Throughput of Get(): " << std::fixed << std::setprecision(2) << std::endl << (bytes_ / 1048576.0) / (duration * 1e-6) << " MB/s" << std::endl << std::endl;
start_time = std::chrono::steady_clock::now();
GetDataSmallSize(db, lats);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// std::cout << "Throughput of Get(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << "Throughput of Get(): " << std::fixed << std::setprecision(2) << std::endl << (bytes_ / 1048576.0) / (duration * 1e-6) << " MB/s" << std::endl << std::endl;
// start_time = std::chrono::steady_clock::now();
// GetDataSmallSize(db, lats);
// end_time = std::chrono::steady_clock::now();
// duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// // std::cout << "Throughput of Get(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
// std::cout << "Throughput of Get(): " << std::fixed << std::setprecision(2) << std::endl << (bytes_ / 1048576.0) / (duration * 1e-6) << " MB/s" << std::endl << std::endl;
// Iterator()
start_time = std::chrono::steady_clock::now();
@ -246,11 +246,11 @@ TEST(TestBench, Throughput) {
// std::cout << "Throughput of Iterator(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << "Throughput of Iterator(): " << std::fixed << std::setprecision(2) << std::endl << (bytes_ / 1048576.0) / (duration * 1e-6) << " MB/s" << std::endl << std::endl;
// FindKeysbyField()
// start_time = std::chrono::steady_clock::now();
// SearchField(db, lats);
// end_time = std::chrono::steady_clock::now();
// duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// std::cout << "Throughput of FindKeysbyField(): " << std::fixed << std::setprecision(2) << std::endl << search_ * 1e6 / duration << " ops/s" << std::endl << std::endl;
start_time = std::chrono::steady_clock::now();
SearchField(db, lats);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
std::cout << "Throughput of FindKeysbyField(): " << std::fixed << std::setprecision(2) << std::endl << search_ * 1e6 / duration << " ops/s" << std::endl << std::endl;
delete db;
}
@ -294,12 +294,12 @@ TEST(TestBench, Latency) {
double get_p99 = std::get<2>(get_latency);
std::cout << "Get Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << get_avg * 1e-3 << " micros/op, " << get_p75 * 1e-3 << " micros/op, " << get_p99 * 1e-3 << " micros/op" << std::endl << std::endl;
GetDataSmallSize(db, get_lats_2);
std::tuple<double, double, double> get_latency_2 = calc_lat(get_lats_2);
double get_avg_s = std::get<0>(get_latency_2);
double get_p75_s = std::get<1>(get_latency_2);
double get_p99_s = std::get<2>(get_latency_2);
std::cout << "Small Get Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << get_avg_s * 1e-3 << " micros/op, " << get_p75_s * 1e-3 << " micros/op, " << get_p99_s * 1e-3 << " micros/op" << std::endl << std::endl;
// GetDataSmallSize(db, get_lats_2);
// std::tuple<double, double, double> get_latency_2 = calc_lat(get_lats_2);
// double get_avg_s = std::get<0>(get_latency_2);
// double get_p75_s = std::get<1>(get_latency_2);
// double get_p99_s = std::get<2>(get_latency_2);
// std::cout << "Small Get Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << get_avg_s * 1e-3 << " micros/op, " << get_p75_s * 1e-3 << " micros/op, " << get_p99_s * 1e-3 << " micros/op" << std::endl << std::endl;
ReadOrdered(db, iter_lats);
std::tuple<double, double, double> iter_latency = calc_lat(iter_lats);
@ -308,12 +308,12 @@ TEST(TestBench, Latency) {
double iter_p99 = std::get<2>(iter_latency);
std::cout << "Iterator Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << iter_avg * 1e-3 << " micros/op, " << iter_p75 * 1e-3 << " micros/op, " << iter_p99 * 1e-3 << " micros/op" << std::endl << std::endl;
// SearchField(db, search_lats);
// std::tuple<double, double, double> search_latency = calc_lat(search_lats);
// double search_avg = std::get<0>(search_latency);
// double search_p75 = std::get<1>(search_latency);
// double search_p99 = std::get<2>(search_latency);
// std::cout << "FindKeysByField Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << search_avg * 1e-3 << " micros/op, " << search_p75 * 1e-3 << " micros/op, " << search_p99 * 1e-3 << " micros/op" << std::endl << std::endl;
SearchField(db, search_lats);
std::tuple<double, double, double> search_latency = calc_lat(search_lats);
double search_avg = std::get<0>(search_latency);
double search_p75 = std::get<1>(search_latency);
double search_p99 = std::get<2>(search_latency);
std::cout << "FindKeysByField Latency (avg, P75, P99): " << std::fixed << std::endl << std::setprecision(2) << search_avg * 1e-3 << " micros/op, " << search_p75 * 1e-3 << " micros/op, " << search_p99 * 1e-3 << " micros/op" << std::endl << std::endl;
delete db;

+ 0
- 280
test/test_bench_gc.cc View File

@ -1,280 +0,0 @@
#include <iostream>
#include <gtest/gtest.h>
#include <chrono>
#include <vector>
#include <random>
#include "leveldb/env.h"
#include "leveldb/db.h"
using namespace leveldb;
// Number of key/values to operate in database
constexpr int num_ = 100000;
// Size of each value
constexpr int value_size_ = 500;
// Number of read operations
constexpr int reads_ = 100000;
// Number of findkeysbyfield operations
constexpr int search_ = 20;
int64_t bytes_ = 0;
std::set<int> key_set;
Status OpenDB(std::string dbName, DB **db) {
Options options;
options.create_if_missing = true;
return DB::Open(options, dbName, db);
}
// DB::Put()
void InsertData(DB *db, std::vector<int64_t> &lats) {
WriteOptions writeOptions;
bytes_ = 0;
int64_t bytes = 0;
srand(0);
std::mt19937 value_seed(100);
std::uniform_int_distribution<int> value_range(500, 2048);
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
for (int i = 0; i < num_; i++) {
int key_ = rand() % num_+1;
int value_ = std::rand() % (num_ + 1);
int value_size = value_range(value_seed);
std::string value(value_size, 'a');
std::string key = std::to_string(key_);
FieldArray field_array = {
{"1", value},
};
auto fields = Fields(field_array);
db->Put(writeOptions, key, fields);
bytes += fields.size();
end_time = std::chrono::steady_clock::now();
latency = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - last_time).count();
last_time = end_time;
lats.emplace_back(latency);
if (value_size < 100) {
key_set.insert(key_);
}
}
bytes_ += bytes;
}
// DB::Get() PointQuery Random
void GetData(DB *db, std::vector<int64_t> &lats) {
ReadOptions readOptions;
bytes_ = 0;
int64_t bytes = 0;
srand(0);
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
for (int i = 0; i < reads_; i++) {
int key_ = rand() % num_+1;
std::string key = std::to_string(key_);
Fields ret;
db->Get(readOptions, key, &ret);
bytes += ret.size();
end_time = std::chrono::steady_clock::now();
latency = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - last_time).count();
last_time = end_time;
lats.emplace_back(latency);
}
bytes_ += bytes;
}
// DB::Iterator()->Seek() PointQuery
void PointQuery(DB *db, std::vector<int64_t> &lats) {
ReadOptions options;
srand(0);
bytes_ = 0;
int64_t bytes = 0;
Iterator* iter = db->NewIterator(options);
int key_ = 0;
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
for (int i = 0; i < reads_; i++) {
key_ = (key_ + rand()) % num_+1;
std::string key = std::to_string(key_);
iter->Seek(key);
bytes += iter->fields().size();
end_time = std::chrono::steady_clock::now();
latency = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - last_time).count();
last_time = end_time;
lats.emplace_back(latency);
}
bytes_+=bytes;
delete iter;
}
// DB::Iterator()->SeekToFirst() RangeQuery
void ReadOrdered(DB *db, std::vector<int64_t> &lats) {
Iterator* iter = db->NewIterator(ReadOptions());
int i = 0;
bytes_ = 0;
int64_t bytes = 0;
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
++i;
bytes+=iter->fields().size();
end_time = std::chrono::steady_clock::now();
latency = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - last_time).count();
last_time = end_time;
lats.emplace_back(latency);
}
bytes_+=bytes;
delete iter;
}
// DB::FindKeysByField()
void SearchField(DB *db, std::vector<int64_t> &lats) {
int64_t latency = 0;
auto end_time = std::chrono::steady_clock::now();
auto last_time = end_time;
srand(0);
for (int i = 0; i < search_; i++) {
// Iterator *iter = db->NewIterator(ReadOptions());
int value_ = std::rand() % (num_ + 1);
Field field_to_search = {"1", std::to_string(value_)};
const std::vector<std::string> key_ret = db->FindKeysByField(field_to_search);
end_time = std::chrono::steady_clock::now();
latency = std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - last_time).count();
last_time = end_time;
lats.emplace_back(latency);
}
}
// Insert many k/vs in order to start background GC
void InsertMany(DB *db) {
std::vector<int64_t> lats;
for (int i = 0; i < 2; i++) {
InsertData(db, lats);
GetData(db, lats);
db->CompactRange(nullptr, nullptr);
std::cout << "put and get " << i << " of Many" << std::endl;
}
}
double CalculatePercentile(const std::vector<int64_t>& latencies, double percentile) {
if (latencies.empty()) return 0.0;
std::vector<int64_t> sorted_latencies = latencies;
std::sort(sorted_latencies.begin(), sorted_latencies.end());
size_t index = static_cast<size_t>(percentile * sorted_latencies.size());
if (index >= sorted_latencies.size()) index = sorted_latencies.size() - 1;
return sorted_latencies[index];
}
TEST(TestBench, WithGC) {
DB *db;
if(OpenDB("testdb", &db).ok() == false) {
std::cerr << "open db failed" << std::endl;
abort();
}
std::vector<int64_t> put_lats;
std::vector<int64_t> get_lats;
std::vector<int64_t> iter_lats;
std::vector<int64_t> search_lats;
auto calc_lat = [](const std::vector<int64_t>& latencies) {
double avg = 0.0;
for (auto latency : latencies) {
avg += latency;
}
avg /= latencies.size();
double p75 = CalculatePercentile(latencies, 0.75);
double p99 = CalculatePercentile(latencies, 0.99);
return std::make_tuple(avg, p75, p99);
};
InsertMany(db);
// Put()
auto start_time = std::chrono::steady_clock::now();
InsertData(db, put_lats);
auto end_time = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// std::cout << "Throughput of Put(): " << std::fixed << num_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << std::endl << "Write size: " << bytes_ << " bytes" << std::endl << std::endl;
std::cout << "Throughput of Put(): " << std::fixed << std::setprecision(2) << (bytes_ / 1048576.0) / (duration * 1e-6) << std::endl << std::endl; // << " MB/s" << std::endl << std::endl;
std::tuple<double, double, double> put_latency = calc_lat(put_lats);
double put_avg = std::get<0>(put_latency);
double put_p75 = std::get<1>(put_latency);
double put_p99 = std::get<2>(put_latency);
std::cout << "Put Latency (avg, P75, P99): " << std::endl << std::setprecision(2) << put_avg * 1e-3 // << " micros/op, "
<< std::endl << put_p75 * 1e-3 // << " micros/op, "
<< std::endl << put_p99 * 1e-3 // << " micros/op"
<< std::endl << std::endl;
// Get()
start_time = std::chrono::steady_clock::now();
GetData(db, get_lats);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// std::cout << "Throughput of Get(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << "Throughput of Get(): " << std::fixed << std::setprecision(2) << (bytes_ / 1048576.0) / (duration * 1e-6) << std::endl << std::endl; // << " MB/s" << std::endl << std::endl;
std::tuple<double, double, double> get_latency = calc_lat(get_lats);
double get_avg = std::get<0>(get_latency);
double get_p75 = std::get<1>(get_latency);
double get_p99 = std::get<2>(get_latency);
std::cout << "Put Latency (avg, P75, P99): " << std::endl << std::setprecision(2) << get_avg * 1e-3 // << " micros/op, "
<< std::endl << get_p75 * 1e-3 // << " micros/op, "
<< std::endl << get_p99 * 1e-3 // << " micros/op"
<< std::endl << std::endl;
// Iterator()
start_time = std::chrono::steady_clock::now();
ReadOrdered(db, iter_lats);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
// std::cout << "Throughput of Iterator(): " << std::fixed << reads_ * 1e6 / duration << " ops/s" << std::endl;
std::cout << "Throughput of Iterator(): " << std::fixed << std::setprecision(2) << (bytes_ / 1048576.0) / (duration * 1e-6) << std::endl << std::endl; // << " MB/s" << std::endl << std::endl;
std::tuple<double, double, double> iter_latency = calc_lat(iter_lats);
double iter_avg = std::get<0>(iter_latency);
double iter_p75 = std::get<1>(iter_latency);
double iter_p99 = std::get<2>(iter_latency);
std::cout << "Put Latency (avg, P75, P99): " << std::endl << std::setprecision(2) << iter_avg * 1e-3 // << " micros/op, "
<< std::endl << iter_p75 * 1e-3 // << " micros/op, "
<< std::endl << iter_p99 * 1e-3 // << " micros/op"
<< std::endl << std::endl;
// FindKeysByField()
start_time = std::chrono::steady_clock::now();
SearchField(db, search_lats);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
std::cout << "Throughput of FindKeysbyField(): " << std::setprecision(2) << search_ * 1e6 / duration << std::endl << std::endl; // << " ops/s" << std::endl << std::endl;
std::tuple<double, double, double> search_latency = calc_lat(search_lats);
double search_avg = std::get<0>(search_latency);
double search_p75 = std::get<1>(search_latency);
double search_p99 = std::get<2>(search_latency);
std::cout << "Put Latency (avg, P75, P99): " << std::endl << std::setprecision(2) << search_avg * 1e-3 // << " micros/op, "
<< std::endl << search_p75 * 1e-3 // << " micros/op, "
<< std::endl << search_p99 * 1e-3 // << " micros/op"
<< std::endl << std::endl;
delete db;
}
int main(int argc, char **argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

||||||
x
 
000:0
Loading…
Cancel
Save