#16 第13周作业(线性回归实践)

Öppen
öppnade 2 år sedan av 吴贤佑 · 31 kommentarer
吴贤佑 kommenterad 2 år sedan

1)完成5.3.5中实践题第1题,有素材,按题目要求命名。
2)完成5.3.5中实践题第2题,有素材,按题目要求命名。
3)完成5.3.5中实践题第3题,有素材,按题目要求命名。
以上作业不迟于周六上午9点,提交至水杉码园“学号”仓库的homework13分支下。


水杉码园上的本次作业要求:https://gitea.shuishan.net.cn/AI-B.Liuyao.2022Spring.XinYuan/AllStuRead/issues/16
腾讯工蜂上的本次作业要求:https://git.code.tencent.com/AI-B.Liuyao.2022Spring.XinYuan/lesson13/issues/1
腾讯工蜂上的本次课程材料(课件及素材等):https://git.code.tencent.com/AI-B.Liuyao.2022Spring.XinYuan/lesson13/tree/master

1)完成5.3.5中实践题第1题,有素材,按题目要求命名。 2)完成5.3.5中实践题第2题,有素材,按题目要求命名。 3)完成5.3.5中实践题第3题,有素材,按题目要求命名。 以上作业不迟于周六上午9点,提交至水杉码园“学号”仓库的homework13分支下。 ----- 水杉码园上的本次作业要求:https://gitea.shuishan.net.cn/AI-B.Liuyao.2022Spring.XinYuan/AllStuRead/issues/16 腾讯工蜂上的本次作业要求:https://git.code.tencent.com/AI-B.Liuyao.2022Spring.XinYuan/lesson13/issues/1 腾讯工蜂上的本次课程材料(课件及素材等):https://git.code.tencent.com/AI-B.Liuyao.2022Spring.XinYuan/lesson13/tree/master
吴思辰 kommenterad 2 år sedan

家人们,这个“第13个系数”是什么个意思0.0
为什么他是第13个,前12个都是啥,不是很清楚0.0
image

家人们,这个“第13个系数”是什么个意思0.0 为什么他是第13个,前12个都是啥,不是很清楚0.0 ![image](/attachments/6c79b835-66e5-4093-a5a9-b78a5775c57e)
9.8 KiB
9.8 KiB
吴贤佑 kommenterad 2 år sedan
Ägare

家人们,这个“第13个系数”是什么个意思0.0
为什么他是第13个,前12个都是啥,不是很清楚0.0
image

该数据集提供13个属性,因此对应多元线性回归产生13个系数

> 家人们,这个“第13个系数”是什么个意思0.0 > 为什么他是第13个,前12个都是啥,不是很清楚0.0 > ![image](/attachments/6c79b835-66e5-4093-a5a9-b78a5775c57e) 该数据集提供13个属性,因此对应多元线性回归产生13个系数
鲁迪 kommenterad 2 år sedan

image image 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗

![image](/attachments/a9b8b07d-f975-4d7f-9778-4818edce6708) ![image](/attachments/83758289-8d19-4ae8-97d5-9e6b68fb4d11) 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗
余其乐 kommenterad 2 år sedan

请问(-1,1)是什么形状的数组((

请问(-1,1)是什么形状的数组((
战晓曦 kommenterad 2 år sedan

请问(-1,1)是什么形状的数组((

应该是任意行,1列的吧

> 请问(-1,1)是什么形状的数组(( 应该是任意行,1列的吧
吴思辰 kommenterad 2 år sedan

请问(-1,1)是什么形状的数组((

小伙伴你好!你试着把它输出一下就看出来了!

> 请问(-1,1)是什么形状的数组(( 小伙伴你好!你试着把它输出一下就看出来了!
王伶方 kommenterad 2 år sedan

image 想知道回归系数这两个0.5指的是什么意思?为什么是0.5?

![image](/attachments/a584ec71-76e1-49cb-91fb-a7ef7f6f8dca) 想知道回归系数这两个0.5指的是什么意思?为什么是0.5?
战晓曦 kommenterad 2 år sedan

请问,5-3-1的自变量和因变量这个是什么意思啊,没太看懂...
image

请问,5-3-1的自变量和因变量这个是什么意思啊,没太看懂... ![image](/attachments/28ccaef8-efe2-42ac-a3bf-d135fea6c0ba)
7.6 KiB
7.6 KiB
刘垚 kommenterad 2 år sedan
Ägare

image image 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗

r2_score(diabetes_y_test, diabetes_y_pred),使用的是metrics中的函数,因此需要提前把预测值计算好,提供给相关指标函数计算。

lr.score(x_test,y_test),使用的是linearregression的函数,不需要提前计算预测值,它会自动计算预测值,然后计算相关指标。

> ![image](/attachments/a9b8b07d-f975-4d7f-9778-4818edce6708) > ![image](/attachments/83758289-8d19-4ae8-97d5-9e6b68fb4d11) > 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗 r2_score(diabetes_y_test, diabetes_y_pred),使用的是metrics中的函数,因此需要提前把预测值计算好,提供给相关指标函数计算。 lr.score(x_test,y_test),使用的是linearregression的函数,不需要提前计算预测值,它会自动计算预测值,然后计算相关指标。
刘垚 kommenterad 2 år sedan
Ägare

请问(-1,1)是什么形状的数组((

numpy中reshape(-1,1)与reshape(1,-1)的作用详解: https://www.cnblogs.com/jarph/p/15234226.html

> 请问(-1,1)是什么形状的数组(( numpy中reshape(-1,1)与reshape(1,-1)的作用详解: https://www.cnblogs.com/jarph/p/15234226.html
鲁迪 kommenterad 2 år sedan

image image 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗

r2_score(diabetes_y_test, diabetes_y_pred),使用的是metrics中的函数,因此需要提前把预测值计算好,提供给相关指标函数计算。

lr.score(x_test,y_test),使用的是linearregression的函数,不需要提前计算预测值,它会自动计算预测值,然后计算相关指标。

谢谢老师!那请问这两个方法在实际应用的时候有偏好吗?还是都可以用呢?

> > ![image](/attachments/a9b8b07d-f975-4d7f-9778-4818edce6708) > > ![image](/attachments/83758289-8d19-4ae8-97d5-9e6b68fb4d11) > > 请问为什么这两个决定系数一个是用X_test,y_test算,另一个是用y_test,y_pred算呢?两个算法出来的数不一样,有什么区别吗 > > r2_score(diabetes_y_test, diabetes_y_pred),使用的是metrics中的函数,因此需要提前把预测值计算好,提供给相关指标函数计算。 > > lr.score(x_test,y_test),使用的是linearregression的函数,不需要提前计算预测值,它会自动计算预测值,然后计算相关指标。 谢谢老师!那请问这两个方法在实际应用的时候有偏好吗?还是都可以用呢?
鲁迪 kommenterad 2 år sedan

image 想知道回归系数这两个0.5指的是什么意思?为什么是0.5?

大概是X里的第一列0][1][2的回归系数是0.5,第二列0][1][2的回归系数也是0.5这样吧

> ![image](/attachments/a584ec71-76e1-49cb-91fb-a7ef7f6f8dca) > 想知道回归系数这两个0.5指的是什么意思?为什么是0.5? 大概是X里的第一列[[0][1][2]]的回归系数是0.5,第二列[[0][1][2]]的回归系数也是0.5这样吧
吴贤佑 kommenterad 2 år sedan
Ägare

image 想知道回归系数这两个0.5指的是什么意思?为什么是0.5?

大概是X里的第一列0][1][2的回归系数是0.5,第二列0][1][2的回归系数也是0.5这样吧

这里有两个特征x1、x2,特征[0,0]对应标签0,以此类推。
二元回归处理后得到y=0.5x1+0.5x2+b(截距)

> > ![image](/attachments/a584ec71-76e1-49cb-91fb-a7ef7f6f8dca) > > 想知道回归系数这两个0.5指的是什么意思?为什么是0.5? > > 大概是X里的第一列[[0][1][2]]的回归系数是0.5,第二列[[0][1][2]]的回归系数也是0.5这样吧 这里有两个特征x1、x2,特征[0,0]对应标签0,以此类推。 二元回归处理后得到y=0.5x1+0.5x2+b(截距)
张子涵 kommenterad 2 år sedan

请问这里题目里的[0.5,0.5]是什么意思呀

请问这里题目里的[0.5,0.5]是什么意思呀
沈昕晔 kommenterad 2 år sedan

有点没搞懂这两行代码是干什么的?但是没了就报错
图片

有点没搞懂这两行代码是干什么的?但是没了就报错 ![图片](/attachments/a6771a4f-502d-4417-94f9-90f7a2059c24)
2.7 KiB
李美颀 kommenterad 2 år sedan

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)
21 KiB
吴贤佑 kommenterad 2 år sedan
Ägare

有点没搞懂这两行代码是干什么的?但是没了就报错
图片

调整输入的结构,因为fit需要接收形状为(n_samples, n_features)的输入。

> 有点没搞懂这两行代码是干什么的?但是没了就报错 > ![图片](/attachments/a6771a4f-502d-4417-94f9-90f7a2059c24) 调整输入的结构,因为fit需要接收形状为(n_samples, n_features)的输入。
吴贤佑 kommenterad 2 år sedan
Ägare

请问这里题目里的[0.5,0.5]是什么意思呀

此处是素材有误,不必理会

> 请问这里题目里的[0.5,0.5]是什么意思呀 此处是素材有误,不必理会
吴贤佑 kommenterad 2 år sedan
Ägare

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

> 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以
余其乐 kommenterad 2 år sedan

请问(-1,1)是什么形状的数组((

numpy中reshape(-1,1)与reshape(1,-1)的作用详解: https://www.cnblogs.com/jarph/p/15234226.html

欧好的!明白了!谢谢老师!!!

> > 请问(-1,1)是什么形状的数组(( > > > numpy中reshape(-1,1)与reshape(1,-1)的作用详解: https://www.cnblogs.com/jarph/p/15234226.html > > > 欧好的!明白了!谢谢老师!!!
孙莉雅 kommenterad 2 år sedan

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?

> > 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) > > 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以 好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?
吴贤佑 kommenterad 2 år sedan
Ägare

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?

这只是导入的层级不一样,最终都是使用LinearRegression

> > > 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > > > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) > > > > 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以 > > 好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢? 这只是导入的层级不一样,最终都是使用LinearRegression
张子涵 kommenterad 2 år sedan

请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀?

请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀?
吴贤佑 kommenterad 2 år sedan
Ägare

请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀?

这种导入方式没有问题,你可能需要检查下你的环境是否安装了sklearn

> 请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀? 这种导入方式没有问题,你可能需要检查下你的环境是否安装了sklearn
孙莉雅 kommenterad 2 år sedan

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?

这只是导入的层级不一样,最终都是使用LinearRegression

那为什么不同的层级就会有不同的结果呢?

> > > > 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > > > > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) > > > > > > 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以 > > > > 好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢? > > 这只是导入的层级不一样,最终都是使用LinearRegression 那为什么不同的层级就会有不同的结果呢?
孙莉雅 kommenterad 2 år sedan

请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀?

你是不是没打开prompt呀

> 请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀? 你是不是没打开prompt呀
吴贤佑 kommenterad 2 år sedan
Ägare

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?

这只是导入的层级不一样,最终都是使用LinearRegression

那为什么不同的层级就会有不同的结果呢?

我的电脑上,两种导入方式得到的结果是一样的

> > > > > 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > > > > > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) > > > > > > > > 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以 > > > > > > 好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢? > > > > 这只是导入的层级不一样,最终都是使用LinearRegression > > 那为什么不同的层级就会有不同的结果呢? 我的电脑上,两种导入方式得到的结果是一样的
张子涵 kommenterad 2 år sedan

请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀?

你是不是没打开prompt呀
嗷好像是的,不过我用linear_model和LinearRegression运行出来的都是2.22,我觉得应该两个数都可以吧

> > 请问为什么导入LinearRegression的时候可以正常运行出2.22,但导入linear_model就会报错呀? > > 你是不是没打开prompt呀 嗷好像是的,不过我用linear_model和LinearRegression运行出来的都是2.22,我觉得应该两个数都可以吧
孙莉雅 kommenterad 2 år sedan

想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样?
(因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的)

可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以

好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢?

这只是导入的层级不一样,最终都是使用LinearRegression

那为什么不同的层级就会有不同的结果呢?

我的电脑上,两种导入方式得到的结果是一样的

好的,谢谢助教

> > > > > > 想请问一下第一题的结果大家输出的截距都是一样的嘛?还是说截距是0有不同的形式每次都不一样? > > > > > > (因为发现我输出的结果和平台上其他小伙伴的结果好像不太一样(有点像二倍),但是我自己试了几次输出的结果又是一样的) > > > > > > > > > > 可能因为大家电脑配置的不同略有差异,只要是个很小的值就可以 > > > > > > > > 好像是因为导入的库不一样,导入linear_model就是1.11,但是导入LinearRegression就是1.22,所以应该导入哪一个库呢? > > > > > > 这只是导入的层级不一样,最终都是使用LinearRegression > > > > 那为什么不同的层级就会有不同的结果呢? > > 我的电脑上,两种导入方式得到的结果是一样的 > 好的,谢谢助教
杨静雯 kommenterad 2 år sedan

请问书上例题里写的range(y_test.shape[0])是什么意思?

请问书上例题里写的range(y_test.shape[0])是什么意思?
吴贤佑 kommenterad 2 år sedan
Ägare

请问书上例题里写的range(y_test.shape[0])是什么意思?

测试集样本数量

> 请问书上例题里写的range(y_test.shape[0])是什么意思? 测试集样本数量
test2022 ändrade titeln från 第13周作业 till 第13周作业(线性回归实践) 1 år sedan
Logga in för att delta i denna konversation.
Ingen Etikett
Ingen Milsten
Ingen tilldelad
Notiser
Förfallodatum

Inget förfallodatum satt.

Beroenden

Det här ärendet har för närvarande inga beroenden.

Laddar…
Det finns inget innehåll än.