|
@ -5,6 +5,8 @@ import numpy as np |
|
|
import datetime |
|
|
import datetime |
|
|
import math |
|
|
import math |
|
|
from scipy import interpolate |
|
|
from scipy import interpolate |
|
|
|
|
|
from pyecharts.charts import Map |
|
|
|
|
|
from pyecharts import options |
|
|
|
|
|
|
|
|
plt.rcParams['axes.unicode_minus'] = False |
|
|
plt.rcParams['axes.unicode_minus'] = False |
|
|
|
|
|
|
|
@ -37,7 +39,6 @@ dfChinaSept = China[China['Date'].dt.month == 9] |
|
|
dfChinaOct = China[China['Date'].dt.month == 10] |
|
|
dfChinaOct = China[China['Date'].dt.month == 10] |
|
|
dfChinaNov = China[China['Date'].dt.month == 11] |
|
|
dfChinaNov = China[China['Date'].dt.month == 11] |
|
|
dfChinaDec = China[China['Date'].dt.month == 12] |
|
|
dfChinaDec = China[China['Date'].dt.month == 12] |
|
|
|
|
|
|
|
|
dfUSJan = US[US['Date'].dt.month == 1] |
|
|
dfUSJan = US[US['Date'].dt.month == 1] |
|
|
dfUSFeb = US[US['Date'].dt.month == 2] |
|
|
dfUSFeb = US[US['Date'].dt.month == 2] |
|
|
dfUSMar = US[US['Date'].dt.month == 3] |
|
|
dfUSMar = US[US['Date'].dt.month == 3] |
|
@ -58,7 +59,6 @@ recoveredChina = [dfChinaJan['Recovered'].sum(),dfChinaFeb['Recovered'].sum(),df |
|
|
dfChinaMay['Recovered'].sum(),dfChinaJun['Recovered'].sum(),dfChinaJul['Recovered'].sum(),dfChinaAug['Recovered'].sum(), |
|
|
dfChinaMay['Recovered'].sum(),dfChinaJun['Recovered'].sum(),dfChinaJul['Recovered'].sum(),dfChinaAug['Recovered'].sum(), |
|
|
dfChinaSept['Recovered'].sum(),dfChinaOct['Recovered'].sum(),dfChinaNov['Recovered'].sum(),dfChinaDec['Recovered'].sum()] |
|
|
dfChinaSept['Recovered'].sum(),dfChinaOct['Recovered'].sum(),dfChinaNov['Recovered'].sum(),dfChinaDec['Recovered'].sum()] |
|
|
recoverPossChina = [] |
|
|
recoverPossChina = [] |
|
|
|
|
|
|
|
|
confirmedUS = [dfUSJan['Confirmed'].sum(),dfUSFeb['Confirmed'].sum(),dfUSMar['Confirmed'].sum(),dfUSApr['Confirmed'].sum(), |
|
|
confirmedUS = [dfUSJan['Confirmed'].sum(),dfUSFeb['Confirmed'].sum(),dfUSMar['Confirmed'].sum(),dfUSApr['Confirmed'].sum(), |
|
|
dfUSMay['Confirmed'].sum(),dfUSJun['Confirmed'].sum(),dfUSJul['Confirmed'].sum(),dfUSAug['Confirmed'].sum(), |
|
|
dfUSMay['Confirmed'].sum(),dfUSJun['Confirmed'].sum(),dfUSJul['Confirmed'].sum(),dfUSAug['Confirmed'].sum(), |
|
|
dfUSSept['Confirmed'].sum(),dfUSOct['Confirmed'].sum(),dfUSNov['Confirmed'].sum(),dfUSDec['Confirmed'].sum()] |
|
|
dfUSSept['Confirmed'].sum(),dfUSOct['Confirmed'].sum(),dfUSNov['Confirmed'].sum(),dfUSDec['Confirmed'].sum()] |
|
@ -102,28 +102,41 @@ datasUS = data3 + data4 + data5 |
|
|
labsUS = [d.get_label() for d in datasUS] |
|
|
labsUS = [d.get_label() for d in datasUS] |
|
|
ax3.legend(datasUS, labsUS, loc="upper left") |
|
|
ax3.legend(datasUS, labsUS, loc="upper left") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataNew = pd.melt(China[['Date','Province/State','Confirmed','Recovered','Deaths']], |
|
|
|
|
|
|
|
|
#中国各省数据 |
|
|
|
|
|
dataChina = pd.melt(China[['Date','Province/State','Confirmed','Recovered','Deaths']], |
|
|
id_vars=['Date','Province/State'],value_vars=['Confirmed','Recovered','Deaths'], |
|
|
id_vars=['Date','Province/State'],value_vars=['Confirmed','Recovered','Deaths'], |
|
|
var_name='group_var',value_name='Cases') |
|
|
var_name='group_var',value_name='Cases') |
|
|
dataNew['Date'] = pd.to_datetime(dataNew['Date']) |
|
|
|
|
|
dfNew = China[['Province/State','Confirmed','Recovered','Deaths']].groupby(['Province/State']).sum().reset_index() |
|
|
|
|
|
dataNew = pd.melt(dfNew,id_vars=['Province/State'], |
|
|
|
|
|
|
|
|
dataChina['Date'] = pd.to_datetime(dataChina['Date']) |
|
|
|
|
|
dfChina = China[['Province/State','Confirmed','Recovered','Deaths']].groupby(['Province/State']).sum().reset_index() |
|
|
|
|
|
dataChina = pd.melt(dfChina,id_vars=['Province/State'], |
|
|
|
|
|
value_vars=['Confirmed','Deaths','Recovered'], |
|
|
|
|
|
var_name='group_var',value_name='Cases') |
|
|
|
|
|
dataChina = dataChina.sort_values(by=['Province/State','group_var']).reset_index(drop=True) |
|
|
|
|
|
dataChina = dataChina.pivot_table(index=['Province/State'], columns='group_var') |
|
|
|
|
|
dataChina.columns = dataChina.columns.droplevel().rename(None) |
|
|
|
|
|
|
|
|
|
|
|
#各国数据 |
|
|
|
|
|
dataWorld = pd.melt(dataset[['Date','Country/Region','Confirmed','Recovered','Deaths']], |
|
|
|
|
|
id_vars=['Date','Country/Region'],value_vars=['Confirmed','Recovered','Deaths'], |
|
|
|
|
|
var_name='group_var',value_name='Cases') |
|
|
|
|
|
dataWorld['Date'] = pd.to_datetime(dataWorld['Date']) |
|
|
|
|
|
dfWorld = dataset[['Country/Region','Confirmed','Recovered','Deaths']].groupby(['Country/Region']).sum().reset_index() |
|
|
|
|
|
dataWorld = pd.melt(dfWorld,id_vars=['Country/Region'], |
|
|
value_vars=['Confirmed','Deaths','Recovered'], |
|
|
value_vars=['Confirmed','Deaths','Recovered'], |
|
|
var_name='group_var',value_name='Cases') |
|
|
var_name='group_var',value_name='Cases') |
|
|
dataNew = dataNew.sort_values(by=['Province/State','group_var']).reset_index(drop=True) |
|
|
|
|
|
dataNew = dataNew.pivot_table(index=['Province/State'], columns='group_var') |
|
|
|
|
|
dataNew.columns = dataNew.columns.droplevel().rename(None) |
|
|
|
|
|
|
|
|
dataWorld = dataWorld.sort_values(by=['Country/Region','group_var']).reset_index(drop=True) |
|
|
|
|
|
dataWorld = dataWorld.pivot_table(index=['Country/Region'], columns='group_var') |
|
|
|
|
|
dataWorld.columns = dataWorld.columns.droplevel().rename(None) |
|
|
|
|
|
|
|
|
#中国各省份 |
|
|
#中国各省份 |
|
|
dataNew.sort_values('Confirmed', inplace=True) |
|
|
|
|
|
|
|
|
dataChina.sort_values('Confirmed', inplace=True) |
|
|
xData = [] |
|
|
xData = [] |
|
|
yConfirmed = [] |
|
|
yConfirmed = [] |
|
|
yRecovered = [] |
|
|
yRecovered = [] |
|
|
for i in range(12): |
|
|
for i in range(12): |
|
|
xData.append(dataNew.index[i]) |
|
|
|
|
|
yConfirmed.append(dataNew['Confirmed'][i]) |
|
|
|
|
|
yRecovered.append(dataNew['Recovered'][i]) |
|
|
|
|
|
|
|
|
xData.append(dataChina.index[i]) |
|
|
|
|
|
yConfirmed.append(dataChina['Confirmed'][i]) |
|
|
|
|
|
yRecovered.append(dataChina['Recovered'][i]) |
|
|
|
|
|
|
|
|
ax5 = fig.add_subplot(212) |
|
|
ax5 = fig.add_subplot(212) |
|
|
ax5.set_title("Total Recovered/Confirmed of China(the bottom ten)",verticalalignment="bottom",fontsize="13") |
|
|
ax5.set_title("Total Recovered/Confirmed of China(the bottom ten)",verticalalignment="bottom",fontsize="13") |
|
@ -134,4 +147,23 @@ ax5.bar(r1, yConfirmed, color='#FF0088', width=barWidth, edgecolor='white', labe |
|
|
ax5.bar(r2, yRecovered, color='#00BBFF', width=barWidth, edgecolor='white', label='Recovered') |
|
|
ax5.bar(r2, yRecovered, color='#00BBFF', width=barWidth, edgecolor='white', label='Recovered') |
|
|
plt.xticks([r + barWidth for r in range(len(yConfirmed))], xData) |
|
|
plt.xticks([r + barWidth for r in range(len(yConfirmed))], xData) |
|
|
ax5.legend() |
|
|
ax5.legend() |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
ChinaConfirmed=[] |
|
|
|
|
|
worldConfirmed=[] |
|
|
|
|
|
|
|
|
|
|
|
for i in range(33): |
|
|
|
|
|
ChinaConfirmed.append((dataChina.index[i],dataChina['Confirmed'][i])) |
|
|
|
|
|
|
|
|
|
|
|
map_China = Map() |
|
|
|
|
|
map_China.set_global_opts(title_opts=options.TitleOpts(title="疫情图-确诊人数"), |
|
|
|
|
|
visualmap_opts=options.VisualMapOpts(is_piecewise=True, |
|
|
|
|
|
pieces=[ |
|
|
|
|
|
{"min": 1000, "label": '>1000人',"color": "#6F171F"}, |
|
|
|
|
|
{"min": 500, "max": 1000,"label": '500-1000人', "color": "#C92C34"}, |
|
|
|
|
|
{"min": 100, "max": 499,"label": '100-499人', "color": "#E35B52"}, |
|
|
|
|
|
{"min": 10, "max": 99,"label": '10-99人', "color": "#F39E86"}, |
|
|
|
|
|
{"min": 1, "max": 9, "label": '1-9人', "color": "#FDEBD0"}])) |
|
|
|
|
|
map_China.add("确诊", ChinaConfirmed, maptype='china') |
|
|
|
|
|
map_China.render("province.html") |