Browse Source

Holt-Winters

master
杨浩然 4 years ago
parent
commit
eb38f3f503
2 changed files with 73 additions and 20 deletions
  1. BIN
      COVID-19/Prediction/.vs/Prediction/v16/.suo
  2. +73
    -20
      COVID-19/Prediction/Prediction/Prediction.py

BIN
COVID-19/Prediction/.vs/Prediction/v16/.suo View File


+ 73
- 20
COVID-19/Prediction/Prediction/Prediction.py View File

@ -4,7 +4,7 @@ import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import math
from statsmodels.tsa.api import SimpleExpSmoothing
from statsmodels.tsa.api import ExponentialSmoothing
from sklearn.metrics import mean_squared_error
#打开数据文件
@ -19,46 +19,99 @@ dataset['Date'] = pd.to_datetime(dataset['Date'])
dataset = dataset[['Country/Region','Confirmed','Recovered','Deaths','Date']].groupby(['Country/Region','Date']).sum().reset_index()
#取出中、美、俄的数据
CN = dataset[dataset['Country/Region'] == 'China'].reset_index()
CN = CN.drop('index', 1)
US = dataset[dataset['Country/Region'] == 'US'].reset_index()
US = US.drop('index', 1)
RUS = dataset[dataset['Country/Region'] == 'Russia'].reset_index()
RUS = RUS.drop('index', 1)
#中国
CN = dataset[dataset['Country/Region'] == 'China']
CN.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
US = dataset[dataset['Country/Region'] == 'US']
US.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
#划分训练集、测试集
trainCN = CN[CN['Date'] < '2020-11-01 ']
testCN = CN[CN['Date'] >= '2020-11-01']
testCN = CN[CN['Date'] >= '2020-11-01']
trainUS = US[US['Date'] < '2020-11-01 ']
testUS = US[US['Date'] >= '2020-11-01']
#简单指数法
yCNexp = testCN.copy()
confirmedCNexp = SimpleExpSmoothing(np.asarray(trainCN['Confirmed'])).fit(smoothing_level=0.4, optimized=False)
recoveredCNexp = SimpleExpSmoothing(np.asarray(trainCN['Recovered'])).fit(smoothing_level=0.4, optimized=False)
deathsCNexp = SimpleExpSmoothing(np.asarray(trainCN['Deaths'])).fit(smoothing_level=0.4, optimized=False)
yUSexp = testUS.copy()
#训练模型
confirmedCNexp = ExponentialSmoothing(np.asarray(trainCN['Confirmed']), trend='add', seasonal=None).fit()
recoveredCNexp = ExponentialSmoothing(np.asarray(trainCN['Recovered']), trend='add', seasonal=None).fit()
deathsCNexp = ExponentialSmoothing(np.asarray(trainCN['Deaths']), trend='add', seasonal=None).fit()
confirmedUSexp = ExponentialSmoothing(np.asarray(trainUS['Confirmed']), trend='add', seasonal=None).fit()
recoveredUSexp = ExponentialSmoothing(np.asarray(trainUS['Recovered']), trend='add', seasonal=None).fit()
deathsUSexp = ExponentialSmoothing(np.asarray(trainUS['Deaths']), trend='add', seasonal=None).fit()
#测试
yCNexp['confirmedTest'] = confirmedCNexp.forecast(len(testCN))
yCNexp['recoveredTest'] = recoveredCNexp.forecast(len(testCN))
yCNexp['deathsTest'] = deathsCNexp.forecast(len(testCN))
yUSexp['confirmedTest'] = confirmedUSexp.forecast(len(testUS))
yUSexp['recoveredTest'] = recoveredUSexp.forecast(len(testUS))
yUSexp['deathsTest'] = deathsUSexp.forecast(len(testUS))
#预测将来七天
forecastCNexp = pd.DataFrame({'Date':['2020-12-10','2020-12-11','2020-12-12','2020-12-13','2020-12-14','2020-12-15','2020-12-16']})
forecastUSexp = pd.DataFrame({'Date':['2020-12-10','2020-12-11','2020-12-12','2020-12-13','2020-12-14','2020-12-15','2020-12-16']})
forecastCNexp['Date'] = pd.to_datetime(forecastCNexp['Date'], format='%Y/%m/%d').values.astype('datetime64[h]')
forecastCNexp['confirmedPred'] = confirmedCNexp.forecast(len(forecastCNexp))
forecastCNexp['recoveredPred'] = recoveredCNexp.forecast(len(forecastCNexp))
forecastCNexp['deathsPred'] = deathsCNexp.forecast(len(forecastCNexp))
forecastUSexp['Date'] = pd.to_datetime(forecastUSexp['Date'], format='%Y/%m/%d').values.astype('datetime64[h]')
forecastUSexp['confirmedPred'] = confirmedUSexp.forecast(len(forecastUSexp))
forecastUSexp['recoveredPred'] = recoveredUSexp.forecast(len(forecastUSexp))
forecastUSexp['deathsPred'] = deathsUSexp.forecast(len(forecastUSexp))
#RMSE
rmseCNexpCon = pow(mean_squared_error(np.asarray(testCN['Confirmed']), np.asarray(yCNexp['confirmedTest'])),0.05)
rmseCNexpRec = pow(mean_squared_error(np.asarray(testCN['Recovered']), np.asarray(yCNexp['recoveredTest'])),0.05)
rmseCNexpDea = pow(mean_squared_error(np.asarray(testCN['Deaths']), np.asarray(yCNexp['deathsTest'])),0.5)
rmseUSexpCon = pow(mean_squared_error(np.asarray(testUS['Confirmed']), np.asarray(yUSexp['confirmedTest'])),0.05)
rmseUSexpRec = pow(mean_squared_error(np.asarray(testUS['Recovered']), np.asarray(yUSexp['recoveredTest'])),0.05)
rmseUSexpDea = pow(mean_squared_error(np.asarray(testUS['Deaths']), np.asarray(yUSexp['deathsTest'])),0.05)
#可视化
figCN = plt.figure()
axCNexp = figCN.add_subplot(311)
axCNexp.set_title("Simple Exponential Smoothing(CN)",verticalalignment="bottom",fontsize="13")
fig = plt.figure()
axCNexp = fig.add_subplot(211)
axCNexp.set_title("Holt-Winters (CN)",verticalalignment="bottom",fontsize="13")
CN.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
yCNexp.index = pd.Index(pd.date_range('2020-11-01','2020-12-09',freq = '1D'))
forecastCNexp.index = pd.Index(pd.date_range('2020-12-10','2020-12-16',freq = '1D'))
axCNexp.plot(CN['Confirmed'],label="confirmed",linestyle=":")
axCNexp.plot(CN['Recovered'],label="recovered",linestyle=":")
axCNexp.plot(CN['Deaths'],label="deaths",linestyle=":")
axCNexp.plot(yCNexp['confirmedTest'],label="exp confirmed")
axCNexp.plot(yCNexp['recoveredTest'],label="exp recovered")
axCNexp.plot(yCNexp['deathsTest'],label="exp deaths")
axCNexp.plot(yCNexp['confirmedTest'],label="confirmed test")
axCNexp.plot(yCNexp['recoveredTest'],label="recovered test")
axCNexp.plot(yCNexp['deathsTest'],label="deaths test")
axCNexp.plot(forecastCNexp['confirmedPred'],label="confirmed prediction")
axCNexp.plot(forecastCNexp['recoveredPred'],label="recovered prediction")
axCNexp.plot(forecastCNexp['deathsPred'],label="deaths prediction")
axUSexp = fig.add_subplot(212)
axUSexp.set_title("Holt-Winters (US)",verticalalignment="bottom",fontsize="13")
US.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
yUSexp.index = pd.Index(pd.date_range('2020-11-01','2020-12-09',freq = '1D'))
forecastUSexp.index = pd.Index(pd.date_range('2020-12-10','2020-12-16',freq = '1D'))
axUSexp.plot(US['Confirmed'],label="confirmed",linestyle=":")
axUSexp.plot(US['Recovered'],label="recovered",linestyle=":")
axUSexp.plot(US['Deaths'],label="deaths",linestyle=":")
axUSexp.plot(yUSexp['confirmedTest'],label="confirmed test")
axUSexp.plot(yUSexp['recoveredTest'],label="recovered test")
axUSexp.plot(yUSexp['deathsTest'],label="deaths test")
axUSexp.plot(forecastUSexp['confirmedPred'],label="confirmed prediction")
axUSexp.plot(forecastUSexp['recoveredPred'],label="recovered prediction")
axUSexp.plot(forecastUSexp['deathsPred'],label="deaths prediction")
plt.tight_layout()
plt.gcf().autofmt_xdate()
plt.legend()
plt.legend(labelspacing=0.05)
plt.show()

Loading…
Cancel
Save