瀏覽代碼

essay done

master
杨浩然 3 年之前
父節點
當前提交
c2206c0115
共有 19 個文件被更改,包括 9 次插入7 次删除
  1. 二進制
      COVID-19/Prediction/.vs/Prediction/v16/.suo
  2. +3
    -1
      COVID-19/Prediction/Prediction/CN.py
  3. +1
    -1
      COVID-19/Prediction/Prediction/CNConPara.py
  4. +1
    -1
      COVID-19/Prediction/Prediction/CNDeaPara .py
  5. +1
    -1
      COVID-19/Prediction/Prediction/CNRecPara.py
  6. +3
    -3
      COVID-19/Prediction/Prediction/ExponentialSmoothing.py
  7. 二進制
      COVID-19/Visualization/.vs/Visualization/v16/.suo
  8. 二進制
      Essay/COVID-19.pptx
  9. 二進制
      Essay/基于新冠疫情数据的分析与建模.docx
  10. 二進制
      Essay/基于新冠疫情数据的分析与建模.pdf
  11. 二進制
      Essay/基于新冠疫情数据的分析与建模.pptx
  12. 二進制
      ParaCon/Figure_1.png
  13. 二進制
      ParaCon/Figure_2.png
  14. 二進制
      ParaCon/Figure_3.png
  15. 二進制
      ParaDea/Figure_1.png
  16. 二進制
      ParaRec/Figure_1.png
  17. 二進制
      ParaRec/Figure_2.png
  18. 二進制
      prediction_figure/Figure_1.png
  19. 二進制
      prediction_figure/Figure_4.png

二進制
COVID-19/Prediction/.vs/Prediction/v16/.suo 查看文件


+ 3
- 1
COVID-19/Prediction/Prediction/CN.py 查看文件

@ -109,11 +109,13 @@ fig2 = plt.figure()
axcon = fig2.add_subplot(311)
axcon.plot(CN['Confirmed'],label="confirmed")
axcon.plot(confirmed_pre,label="ARIMA")
axcon.legend()
axrec = fig2.add_subplot(312)
axrec.plot(CN['Recovered'],label="recovered")
axrec.plot(recovered_pre,label="ARIMA")
axrec.legend()
axdea = fig2.add_subplot(313)
axdea.plot(CN['Deaths'],label="deaths")
axdea.plot(deaths_pre,label="ARIMA")
plt.legend()
axdea.legend()
plt.show()

+ 1
- 1
COVID-19/Prediction/Prediction/CNConPara.py 查看文件

@ -8,7 +8,7 @@ BIC = [5362.9155, 5350.6644, 5342.7083, 5322.5254, 5289.0656, 5291.3404, 5294.84
x = ['0,0,1','0,0,2','0,0,3','1,0,0','1,0,1','1,0,2','1,0,3','2,0,0','2,0,1','2,0,2','2,0,3','3,0,0','3,0,1','3,0,2']
plt.title("AIC/BIC of CN ARIMA Confirmed Model")
plt.title("AIC/BIC of CN ARIMA Confirmed Model",fontsize="25")
plt.plot(x,AIC,label="AIC")
plt.plot(x,BIC,label="BIC")
for y in [AIC, BIC]:

+ 1
- 1
COVID-19/Prediction/Prediction/CNDeaPara .py 查看文件

@ -8,7 +8,7 @@ BIC = [3731.9711, 3734.9149, 3739.3143, 3731.5706, 3724.1844, 3729.6649, 3735.43
x = ['0,0,1','0,0,2','0,0,3','1,0,0','1,0,1','1,0,2','1,0,3','2,0,0','2,0,1','2,0,2','2,0,3','3,0,0','3,0,1']
plt.title("AIC/BIC of CN ARIMA Deaths Model")
plt.title("AIC/BIC of CN ARIMA Deaths Model",fontsize='25')
plt.plot(x,AIC,label="AIC")
plt.plot(x,BIC,label="BIC")
for y in [AIC, BIC]:

+ 1
- 1
COVID-19/Prediction/Prediction/CNRecPara.py 查看文件

@ -8,7 +8,7 @@ BIC = [4895.0924, 4783.8249, 4684.5030, 4625.3036, 4491.2163, 4425.8495, 4431.50
x = ['0,0,1','0,0,2','0,0,3','1,0,0','1,0,1','1,0,2','1,0,3','2,0,0','2,0,1','2,0,2','2,0,3','3,0,0','3,0,1','3,0,2']
plt.title("AIC/BIC of CN ARIMA Recovered Model")
plt.title("AIC/BIC of CN ARIMA Recovered Model",fontsize='25')
plt.plot(x,AIC,label="AIC")
plt.plot(x,BIC,label="BIC")
for y in [AIC, BIC]:

+ 3
- 3
COVID-19/Prediction/Prediction/ExponentialSmoothing.py 查看文件

@ -48,8 +48,8 @@ forecastCNexp['recoveredPred'] = recoveredCNexp.forecast(len(forecastCNexp))
forecastCNexp['deathsPred'] = deathsCNexp.forecast(len(forecastCNexp))
#RMSE
rmseCNexpCon = pow(mean_squared_error(np.asarray(testCN['Confirmed']), np.asarray(yCNexp['confirmedTest'])),0.05)
rmseCNexpRec = pow(mean_squared_error(np.asarray(testCN['Recovered']), np.asarray(yCNexp['recoveredTest'])),0.05)
rmseCNexpCon = pow(mean_squared_error(np.asarray(testCN['Confirmed']), np.asarray(yCNexp['confirmedTest'])),0.5)
rmseCNexpRec = pow(mean_squared_error(np.asarray(testCN['Recovered']), np.asarray(yCNexp['recoveredTest'])),0.5)
rmseCNexpDea = pow(mean_squared_error(np.asarray(testCN['Deaths']), np.asarray(yCNexp['deathsTest'])),0.5)
print(rmseCNexpCon)
@ -58,7 +58,7 @@ print(rmseCNexpDea)
#可视化
plt.title("Holt-Winters",verticalalignment="bottom",fontsize="13")
plt.title("Exponential Smoothing",verticalalignment="bottom",fontsize="20")
CN.index = pd.Index(pd.date_range('2020-01-22','2020-12-09',freq = '1D'))
yCNexp.index = pd.Index(pd.date_range('2020-11-01','2020-12-09',freq = '1D'))

二進制
COVID-19/Visualization/.vs/Visualization/v16/.suo 查看文件


二進制
Essay/COVID-19.pptx 查看文件


二進制
Essay/基于新冠疫情数据的分析与建模.docx 查看文件


二進制
Essay/基于新冠疫情数据的分析与建模.pdf 查看文件


二進制
Essay/基于新冠疫情数据的分析与建模.pptx 查看文件


二進制
ParaCon/Figure_1.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 110 KiB Width: 1920  |  Height: 961  |  Size: 118 KiB

二進制
ParaCon/Figure_2.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 105 KiB

二進制
ParaCon/Figure_3.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 110 KiB

二進制
ParaDea/Figure_1.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 103 KiB Width: 1920  |  Height: 961  |  Size: 110 KiB

二進制
ParaRec/Figure_1.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 99 KiB

二進制
ParaRec/Figure_2.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 105 KiB

二進制
prediction_figure/Figure_1.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 86 KiB Width: 1920  |  Height: 961  |  Size: 89 KiB

二進制
prediction_figure/Figure_4.png 查看文件

Before After
Width: 1920  |  Height: 961  |  Size: 68 KiB Width: 1920  |  Height: 961  |  Size: 73 KiB

Loading…
取消
儲存