Šī lapa labāk darbojas, ja pārlūkam ir iespējots JavaScript.
Sākums
Izpētīt
帮助
返回水杉在线
登录水杉在线
登录水杉码园
10195501441
/
COVID-19Analysis
Vērot
1
Pievienot zvaigznīti
2
Atdalīts
0
Kods
Problēmas
0
Izmaiņu pieprasījumi
0
Laidieni
0
Vikivietne
Aktivitāte
Pārlūkot izejas kodu
essay done
master
杨浩然
pirms 3 gadiem
vecāks
5062350f02
revīzija
c2206c0115
19 mainītis faili
ar
9 papildinājumiem
un
7 dzēšanām
Dalītais skats
Salīdzināšanas iespējas
Rādīt statistiku
Lejupielādēt ielāpa failu
Lejupielādēt izmaiņu failu
Binārs
COVID-19/Prediction/.vs/Prediction/v16/.suo
+3
-1
COVID-19/Prediction/Prediction/CN.py
+1
-1
COVID-19/Prediction/Prediction/CNConPara.py
+1
-1
COVID-19/Prediction/Prediction/CNDeaPara .py
+1
-1
COVID-19/Prediction/Prediction/CNRecPara.py
+3
-3
COVID-19/Prediction/Prediction/ExponentialSmoothing.py
Binārs
COVID-19/Visualization/.vs/Visualization/v16/.suo
Binārs
Essay/COVID-19.pptx
Binārs
Essay/基于新冠疫情数据的分析与建模.docx
Binārs
Essay/基于新冠疫情数据的分析与建模.pdf
Binārs
Essay/基于新冠疫情数据的分析与建模.pptx
Binārs
ParaCon/Figure_1.png
Binārs
ParaCon/Figure_2.png
Binārs
ParaCon/Figure_3.png
Binārs
ParaDea/Figure_1.png
Binārs
ParaRec/Figure_1.png
Binārs
ParaRec/Figure_2.png
Binārs
prediction_figure/Figure_1.png
Binārs
prediction_figure/Figure_4.png
Binārs
COVID-19/Prediction/.vs/Prediction/v16/.suo
Parādīt failu
+ 3
- 1
COVID-19/Prediction/Prediction/CN.py
Parādīt failu
@ -109,11 +109,13 @@ fig2 = plt.figure()
axcon
=
fig2
.
add_subplot
(
311
)
axcon
.
plot
(
CN
[
'
Confirmed
'
]
,
label
=
"
confirmed
"
)
axcon
.
plot
(
confirmed_pre
,
label
=
"
ARIMA
"
)
axcon
.
legend
(
)
axrec
=
fig2
.
add_subplot
(
312
)
axrec
.
plot
(
CN
[
'
Recovered
'
]
,
label
=
"
recovered
"
)
axrec
.
plot
(
recovered_pre
,
label
=
"
ARIMA
"
)
axrec
.
legend
(
)
axdea
=
fig2
.
add_subplot
(
313
)
axdea
.
plot
(
CN
[
'
Deaths
'
]
,
label
=
"
deaths
"
)
axdea
.
plot
(
deaths_pre
,
label
=
"
ARIMA
"
)
plt
.
legend
(
)
axdea
.
legend
(
)
plt
.
show
(
)
+ 1
- 1
COVID-19/Prediction/Prediction/CNConPara.py
Parādīt failu
@ -8,7 +8,7 @@ BIC = [5362.9155, 5350.6644, 5342.7083, 5322.5254, 5289.0656, 5291.3404, 5294.84
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
,
'
3,0,2
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Confirmed Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Confirmed Model
"
,
fontsize
=
"
25
"
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 1
- 1
COVID-19/Prediction/Prediction/CNDeaPara .py
Parādīt failu
@ -8,7 +8,7 @@ BIC = [3731.9711, 3734.9149, 3739.3143, 3731.5706, 3724.1844, 3729.6649, 3735.43
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Deaths Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Deaths Model
"
,
fontsize
=
'
25
'
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 1
- 1
COVID-19/Prediction/Prediction/CNRecPara.py
Parādīt failu
@ -8,7 +8,7 @@ BIC = [4895.0924, 4783.8249, 4684.5030, 4625.3036, 4491.2163, 4425.8495, 4431.50
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
,
'
3,0,2
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Recovered Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Recovered Model
"
,
fontsize
=
'
25
'
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 3
- 3
COVID-19/Prediction/Prediction/ExponentialSmoothing.py
Parādīt failu
@ -48,8 +48,8 @@ forecastCNexp['recoveredPred'] = recoveredCNexp.forecast(len(forecastCNexp))
forecastCNexp
[
'
deathsPred
'
]
=
deathsCNexp
.
forecast
(
len
(
forecastCNexp
)
)
#RMSE
rmseCNexpCon
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Confirmed
'
]
)
,
np
.
asarray
(
yCNexp
[
'
confirmedTest
'
]
)
)
,
0.
0
5
)
rmseCNexpRec
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Recovered
'
]
)
,
np
.
asarray
(
yCNexp
[
'
recoveredTest
'
]
)
)
,
0.
0
5
)
rmseCNexpCon
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Confirmed
'
]
)
,
np
.
asarray
(
yCNexp
[
'
confirmedTest
'
]
)
)
,
0.5
)
rmseCNexpRec
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Recovered
'
]
)
,
np
.
asarray
(
yCNexp
[
'
recoveredTest
'
]
)
)
,
0.5
)
rmseCNexpDea
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Deaths
'
]
)
,
np
.
asarray
(
yCNexp
[
'
deathsTest
'
]
)
)
,
0.5
)
print
(
rmseCNexpCon
)
@ -58,7 +58,7 @@ print(rmseCNexpDea)
#可视化
plt
.
title
(
"
Holt-Winters
"
,
verticalalignment
=
"
bottom
"
,
fontsize
=
"
13
"
)
plt
.
title
(
"
Exponential Smoothing
"
,
verticalalignment
=
"
bottom
"
,
fontsize
=
"
20
"
)
CN
.
index
=
pd
.
Index
(
pd
.
date_range
(
'
2020-01-22
'
,
'
2020-12-09
'
,
freq
=
'
1D
'
)
)
yCNexp
.
index
=
pd
.
Index
(
pd
.
date_range
(
'
2020-11-01
'
,
'
2020-12-09
'
,
freq
=
'
1D
'
)
)
Binārs
COVID-19/Visualization/.vs/Visualization/v16/.suo
Parādīt failu
Binārs
Essay/COVID-19.pptx
Parādīt failu
Binārs
Essay/基于新冠疫情数据的分析与建模.docx
Parādīt failu
Binārs
Essay/基于新冠疫情数据的分析与建模.pdf
Parādīt failu
Binārs
Essay/基于新冠疫情数据的分析与建模.pptx
Parādīt failu
Binārs
ParaCon/Figure_1.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
110 KiB
Platums:
1920
| Augstums:
961
| Izmērs:
118 KiB
Binārs
ParaCon/Figure_2.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
105 KiB
Binārs
ParaCon/Figure_3.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
110 KiB
Binārs
ParaDea/Figure_1.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
103 KiB
Platums:
1920
| Augstums:
961
| Izmērs:
110 KiB
Binārs
ParaRec/Figure_1.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
99 KiB
Binārs
ParaRec/Figure_2.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
105 KiB
Binārs
prediction_figure/Figure_1.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
86 KiB
Platums:
1920
| Augstums:
961
| Izmērs:
89 KiB
Binārs
prediction_figure/Figure_4.png
Parādīt failu
Pirms
Pēc
Platums:
1920
| Augstums:
961
| Izmērs:
68 KiB
Platums:
1920
| Augstums:
961
| Izmērs:
73 KiB
Rakstīt
Priekšskatītījums
Notiek ielāde…
Atcelt
Saglabāt