이 웹사이트는 자바스크립트 활성화가 필요합니다.
홈
탐색
帮助
返回水杉在线
登录水杉在线
登录水杉码园
10195501441
/
COVID-19Analysis
보기
1
좋아요
2
포크
0
코드
이슈
0
풀 리퀘스트
0
릴리즈
0
위키
활동
소스 검색
essay done
master
杨浩然
3 년 전
부모
5062350f02
커밋
c2206c0115
19개의 변경된 파일
과
9개의 추가작업
그리고
7개의 파일을 삭제
분할 보기
Diff Options
Show Stats
Download Patch File
Download Diff File
BIN
COVID-19/Prediction/.vs/Prediction/v16/.suo
+3
-1
COVID-19/Prediction/Prediction/CN.py
+1
-1
COVID-19/Prediction/Prediction/CNConPara.py
+1
-1
COVID-19/Prediction/Prediction/CNDeaPara .py
+1
-1
COVID-19/Prediction/Prediction/CNRecPara.py
+3
-3
COVID-19/Prediction/Prediction/ExponentialSmoothing.py
BIN
COVID-19/Visualization/.vs/Visualization/v16/.suo
BIN
Essay/COVID-19.pptx
BIN
Essay/基于新冠疫情数据的分析与建模.docx
BIN
Essay/基于新冠疫情数据的分析与建模.pdf
BIN
Essay/基于新冠疫情数据的分析与建模.pptx
BIN
ParaCon/Figure_1.png
BIN
ParaCon/Figure_2.png
BIN
ParaCon/Figure_3.png
BIN
ParaDea/Figure_1.png
BIN
ParaRec/Figure_1.png
BIN
ParaRec/Figure_2.png
BIN
prediction_figure/Figure_1.png
BIN
prediction_figure/Figure_4.png
BIN
COVID-19/Prediction/.vs/Prediction/v16/.suo
파일 보기
+ 3
- 1
COVID-19/Prediction/Prediction/CN.py
파일 보기
@ -109,11 +109,13 @@ fig2 = plt.figure()
axcon
=
fig2
.
add_subplot
(
311
)
axcon
.
plot
(
CN
[
'
Confirmed
'
]
,
label
=
"
confirmed
"
)
axcon
.
plot
(
confirmed_pre
,
label
=
"
ARIMA
"
)
axcon
.
legend
(
)
axrec
=
fig2
.
add_subplot
(
312
)
axrec
.
plot
(
CN
[
'
Recovered
'
]
,
label
=
"
recovered
"
)
axrec
.
plot
(
recovered_pre
,
label
=
"
ARIMA
"
)
axrec
.
legend
(
)
axdea
=
fig2
.
add_subplot
(
313
)
axdea
.
plot
(
CN
[
'
Deaths
'
]
,
label
=
"
deaths
"
)
axdea
.
plot
(
deaths_pre
,
label
=
"
ARIMA
"
)
plt
.
legend
(
)
axdea
.
legend
(
)
plt
.
show
(
)
+ 1
- 1
COVID-19/Prediction/Prediction/CNConPara.py
파일 보기
@ -8,7 +8,7 @@ BIC = [5362.9155, 5350.6644, 5342.7083, 5322.5254, 5289.0656, 5291.3404, 5294.84
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
,
'
3,0,2
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Confirmed Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Confirmed Model
"
,
fontsize
=
"
25
"
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 1
- 1
COVID-19/Prediction/Prediction/CNDeaPara .py
파일 보기
@ -8,7 +8,7 @@ BIC = [3731.9711, 3734.9149, 3739.3143, 3731.5706, 3724.1844, 3729.6649, 3735.43
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Deaths Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Deaths Model
"
,
fontsize
=
'
25
'
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 1
- 1
COVID-19/Prediction/Prediction/CNRecPara.py
파일 보기
@ -8,7 +8,7 @@ BIC = [4895.0924, 4783.8249, 4684.5030, 4625.3036, 4491.2163, 4425.8495, 4431.50
x
=
[
'
0,0,1
'
,
'
0,0,2
'
,
'
0,0,3
'
,
'
1,0,0
'
,
'
1,0,1
'
,
'
1,0,2
'
,
'
1,0,3
'
,
'
2,0,0
'
,
'
2,0,1
'
,
'
2,0,2
'
,
'
2,0,3
'
,
'
3,0,0
'
,
'
3,0,1
'
,
'
3,0,2
'
]
plt
.
title
(
"
AIC/BIC of CN ARIMA Recovered Model
"
)
plt
.
title
(
"
AIC/BIC of CN ARIMA Recovered Model
"
,
fontsize
=
'
25
'
)
plt
.
plot
(
x
,
AIC
,
label
=
"
AIC
"
)
plt
.
plot
(
x
,
BIC
,
label
=
"
BIC
"
)
for
y
in
[
AIC
,
BIC
]
:
+ 3
- 3
COVID-19/Prediction/Prediction/ExponentialSmoothing.py
파일 보기
@ -48,8 +48,8 @@ forecastCNexp['recoveredPred'] = recoveredCNexp.forecast(len(forecastCNexp))
forecastCNexp
[
'
deathsPred
'
]
=
deathsCNexp
.
forecast
(
len
(
forecastCNexp
)
)
#RMSE
rmseCNexpCon
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Confirmed
'
]
)
,
np
.
asarray
(
yCNexp
[
'
confirmedTest
'
]
)
)
,
0.
0
5
)
rmseCNexpRec
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Recovered
'
]
)
,
np
.
asarray
(
yCNexp
[
'
recoveredTest
'
]
)
)
,
0.
0
5
)
rmseCNexpCon
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Confirmed
'
]
)
,
np
.
asarray
(
yCNexp
[
'
confirmedTest
'
]
)
)
,
0.5
)
rmseCNexpRec
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Recovered
'
]
)
,
np
.
asarray
(
yCNexp
[
'
recoveredTest
'
]
)
)
,
0.5
)
rmseCNexpDea
=
pow
(
mean_squared_error
(
np
.
asarray
(
testCN
[
'
Deaths
'
]
)
,
np
.
asarray
(
yCNexp
[
'
deathsTest
'
]
)
)
,
0.5
)
print
(
rmseCNexpCon
)
@ -58,7 +58,7 @@ print(rmseCNexpDea)
#可视化
plt
.
title
(
"
Holt-Winters
"
,
verticalalignment
=
"
bottom
"
,
fontsize
=
"
13
"
)
plt
.
title
(
"
Exponential Smoothing
"
,
verticalalignment
=
"
bottom
"
,
fontsize
=
"
20
"
)
CN
.
index
=
pd
.
Index
(
pd
.
date_range
(
'
2020-01-22
'
,
'
2020-12-09
'
,
freq
=
'
1D
'
)
)
yCNexp
.
index
=
pd
.
Index
(
pd
.
date_range
(
'
2020-11-01
'
,
'
2020-12-09
'
,
freq
=
'
1D
'
)
)
BIN
COVID-19/Visualization/.vs/Visualization/v16/.suo
파일 보기
BIN
Essay/COVID-19.pptx
파일 보기
BIN
Essay/基于新冠疫情数据的分析与建模.docx
파일 보기
BIN
Essay/基于新冠疫情数据的分析与建模.pdf
파일 보기
BIN
Essay/基于新冠疫情数据的分析与建模.pptx
파일 보기
BIN
ParaCon/Figure_1.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
110 KiB
Width:
1920
| Height:
961
| Size:
118 KiB
BIN
ParaCon/Figure_2.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
105 KiB
BIN
ParaCon/Figure_3.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
110 KiB
BIN
ParaDea/Figure_1.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
103 KiB
Width:
1920
| Height:
961
| Size:
110 KiB
BIN
ParaRec/Figure_1.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
99 KiB
BIN
ParaRec/Figure_2.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
105 KiB
BIN
prediction_figure/Figure_1.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
86 KiB
Width:
1920
| Height:
961
| Size:
89 KiB
BIN
prediction_figure/Figure_4.png
파일 보기
Before
After
Width:
1920
| Height:
961
| Size:
68 KiB
Width:
1920
| Height:
961
| Size:
73 KiB
쓰기
미리보기
불러오는 중...
취소
저장