Quellcode durchsuchen

'update'

master
邹晨晔 vor 2 Jahren
Ursprung
Commit
e6f581cdfc
15 geänderte Dateien mit 0 neuen und 298 gelöschten Zeilen
  1. +0
    -3
      model/another-try/Wave-U-Net/.idea/.gitignore
  2. +0
    -10
      model/another-try/Wave-U-Net/.idea/Wave-U-Net.iml
  3. +0
    -24
      model/another-try/Wave-U-Net/.idea/inspectionProfiles/Project_Default.xml
  4. +0
    -6
      model/another-try/Wave-U-Net/.idea/inspectionProfiles/profiles_settings.xml
  5. +0
    -4
      model/another-try/Wave-U-Net/.idea/misc.xml
  6. +0
    -8
      model/another-try/Wave-U-Net/.idea/modules.xml
  7. +0
    -6
      model/another-try/Wave-U-Net/.idea/vcs.xml
  8. +0
    -16
      model/another-try/Wave-U-Net/main.py
  9. +0
    -28
      model/another-try/Wave-U-Net/model/Conv.py
  10. +0
    -15
      model/another-try/Wave-U-Net/model/DownSampling.py
  11. +0
    -17
      model/another-try/Wave-U-Net/model/Resample.py
  12. +0
    -17
      model/another-try/Wave-U-Net/model/UpSampling.py
  13. +0
    -41
      model/another-try/Wave-U-Net/model/test.py
  14. +0
    -29
      model/another-try/Wave-U-Net/model/wave-u-net.py
  15. +0
    -74
      model/another-try/Wave-U-Net/read_the_sound.py

+ 0
- 3
model/another-try/Wave-U-Net/.idea/.gitignore Datei anzeigen

@ -1,3 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml

+ 0
- 10
model/another-try/Wave-U-Net/.idea/Wave-U-Net.iml Datei anzeigen

@ -1,10 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.8 (base)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

+ 0
- 24
model/another-try/Wave-U-Net/.idea/inspectionProfiles/Project_Default.xml Datei anzeigen

@ -1,24 +0,0 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ignoredPackages">
<value>
<list size="11">
<item index="0" class="java.lang.String" itemvalue="scikit-image" />
<item index="1" class="java.lang.String" itemvalue="scipy" />
<item index="2" class="java.lang.String" itemvalue="python" />
<item index="3" class="java.lang.String" itemvalue="natsort" />
<item index="4" class="java.lang.String" itemvalue="tensorboardx" />
<item index="5" class="java.lang.String" itemvalue="pillow" />
<item index="6" class="java.lang.String" itemvalue="sklearn" />
<item index="7" class="java.lang.String" itemvalue="torch" />
<item index="8" class="java.lang.String" itemvalue="numpy" />
<item index="9" class="java.lang.String" itemvalue="torchvision" />
<item index="10" class="java.lang.String" itemvalue="torchsummary" />
</list>
</value>
</option>
</inspection_tool>
</profile>
</component>

+ 0
- 6
model/another-try/Wave-U-Net/.idea/inspectionProfiles/profiles_settings.xml Datei anzeigen

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

+ 0
- 4
model/another-try/Wave-U-Net/.idea/misc.xml Datei anzeigen

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (base)" project-jdk-type="Python SDK" />
</project>

+ 0
- 8
model/another-try/Wave-U-Net/.idea/modules.xml Datei anzeigen

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/Wave-U-Net.iml" filepath="$PROJECT_DIR$/.idea/Wave-U-Net.iml" />
</modules>
</component>
</project>

+ 0
- 6
model/another-try/Wave-U-Net/.idea/vcs.xml Datei anzeigen

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
</component>
</project>

+ 0
- 16
model/another-try/Wave-U-Net/main.py Datei anzeigen

@ -1,16 +0,0 @@
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

+ 0
- 28
model/another-try/Wave-U-Net/model/Conv.py Datei anzeigen

@ -1,28 +0,0 @@
import torch.nn as nn
import torch.nn.functional as F
class ConvLayer(nn.Module):
def __init__(self, input, output, kernel_size, stride, transpose=False):
super(ConvLayer,self).__init__()
self.input = input
self.output = output
self.kernel_size = kernel_size
self.stride = stride
self.transpose = transpose
if self.transpose:
self.conv = nn.ConvTranspose1d(input, output, kernel_size=self.kernel_size,
stride=self.stride,padding=self.kernel_size - 1)
else:
self.conv = nn.Conv1d(input, output, kernel_size=self.kernel_size, stride=self.stride)
self.norm = nn.GroupNorm(output // 8, output)
def forward(self,x):
x = self.conv(x)
x = self.norm(x)
output = nn.ReLU(x)
return output

+ 0
- 15
model/another-try/Wave-U-Net/model/DownSampling.py Datei anzeigen

@ -1,15 +0,0 @@
import torch
import torch.nn as nn
from model.Conv import ConvLayer
from model.Resample import Resample
class DownsamplingBlock(nn.Module):
def __init__(self, stride, kernel_size, padding):
super(DownsamplingBlock, self).__init__()
self.stride = stride
self.kernel_size = kernel_size
def forward(self,x):
return out

+ 0
- 17
model/another-try/Wave-U-Net/model/Resample.py Datei anzeigen

@ -1,17 +0,0 @@
import torch.nn as nn
import torch.nn.functional as F
class Resample(nn.Module):
def __init__(self, channels, kernel_size, stride, padding):
super(Resample,self).__init__()
self.channels = channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
def forward(self, x):
out = x
return out

+ 0
- 17
model/another-try/Wave-U-Net/model/UpSampling.py Datei anzeigen

@ -1,17 +0,0 @@
import torch
import torch.nn as nn
from model.Conv import ConvLayer
from model.Resample import Resample
class UpsamplingBlock(nn.Module):
def __init__(self, stride, kernel_size, padding):
super(Upsampling,self).__init__()
self.stride = stride
self.kernel_size = kernel_size
self.padding = padding
def forward(self, x):
out = x
return out

+ 0
- 41
model/another-try/Wave-U-Net/model/test.py Datei anzeigen

@ -1,41 +0,0 @@
import numpy as np
import torch.nn as nn
import torch
# k = 3
#
# dconv1 = nn.Conv1d(1, 1, kernel_size=k, stride=1, padding=0, bias=False)
#
# dconv1.weight.data = torch.ones(1, 1, k)
#
# x = torch.ones(1, 1, 4)
#
# # print('=====dconv1=====')
# #
# # for name, l in dconv1.named_parameters():
# # print('{}={}'.format(name, l.data))
#
# x3 = dconv1(x)
#
# class MyModule(nn.Module):
# def __init__(self):
# super(MyModule, self).__init__()
# self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])
#
# def forward(self, x):
# # ModuleList can act as an iterable, or be indexed using ints
# for i, l in enumerate(self.linears):
# x = self.linears[i // 2](x) + l(x)
# return x
#
# x = np.random.randint(2, size=(1,2,3,4))
#
# z = np.random.randint(2, size=(2,2,2))
# y = x[0,:,1:3,2:4]
# print(x)
# print(y.shape)
# print(y.dot(z).shape)
from py2neo import Graph,Node,Relationship
# 连接neo4j数据库,输入地址、用户名、密码
graph = Graph('http://localhost:7474',auth=("neo4j", "test"))

+ 0
- 29
model/another-try/Wave-U-Net/model/wave-u-net.py Datei anzeigen

@ -1,29 +0,0 @@
import torch
import torch.nn as nn
from model.Conv import ConvLayer
from model.Resample import Resample
class DownsamplingBlock(nn.Module):
def __init__(self, stride, kernel_size):
super(DownsamplingBlock, self).__init__()
self.stride = stride
self.kernel_size = kernel_size
def forward(self,x):
out = x
return out
class UpsamplingBlock(nn.Module):
def __init__(self, stride, kernel_size, padding):
super(Upsampling,self).__init__()
self.stride = stride
self.kernel_size = kernel_size
self.padding = padding
def forward(self, x):
out = x
return out

+ 0
- 74
model/another-try/Wave-U-Net/read_the_sound.py Datei anzeigen

@ -1,74 +0,0 @@
import torch
import torchaudio
import matplotlib as plt
import musdb
import os
import numpy as np
import glob
import librosa
import soundfile
def load(path, sr=22050, mono=True, mode="numpy", offset=0.0, duration=None):
y, curr_sr = librosa.load(path, sr=sr, mono=mono, res_type='kaiser_fast', offset=offset, duration=duration)
if len(y.shape) == 1:
# Expand channel dimension
y = y[np.newaxis, :]
if mode == "pytorch":
y = torch.tensor(y)
return y, curr_sr
def write_wav(path, audio, sr):
soundfile.write(path, audio.T, sr, "PCM_16")
def get_musdbhq(database_path):
'''
Retrieve audio file paths for MUSDB HQ dataset
:param database_path: MUSDB HQ root directory
:return: dictionary with train and test keys, each containing list of samples, each sample containing all audio paths
'''
subsets = list()
for subset in ["train", "test"]:
print("Loading " + subset + " set...")
tracks = glob.glob(os.path.join(database_path, subset, "*"))
samples = list()
# Go through tracks
for track_folder in sorted(tracks):
# Skip track if mixture is already written, assuming this track is done already
example = dict()
for stem in ["mix", "bass", "drums", "other", "vocals"]:
filename = stem if stem != "mix" else "mixture"
audio_path = os.path.join(track_folder, filename + ".wav")
example[stem] = audio_path
# Add other instruments to form accompaniment
acc_path = os.path.join(track_folder, "accompaniment.wav")
if not os.path.exists(acc_path):
print("Writing accompaniment to " + track_folder)
stem_audio = []
for stem in ["bass", "drums", "other"]:
audio, sr = load(example[stem], sr=None, mono=False)
stem_audio.append(audio)
acc_audio = np.clip(sum(stem_audio), -1.0, 1.0)
write_wav(acc_path, acc_audio, sr)
example["accompaniment"] = acc_path
samples.append(example)
subsets.append(samples)
return subsets
path = "C:/Users/IAN/Desktop/Wave-U-Net/musdb18-hq/"
res = get_musdbhq(path)
print(res)

Laden…
Abbrechen
Speichern