Преглед на файлове

上传文件至 ''

master
印钰杰 преди 3 години
родител
ревизия
e78f8e6946
променени са 8 файла, в които са добавени 748 реда и са изтрити 0 реда
  1. +35
    -0
      __init__.py
  2. +133
    -0
      app.py
  3. +73
    -0
      couplet.py
  4. +35
    -0
      error.py
  5. +234
    -0
      model.py
  6. +157
    -0
      seq2seq.py
  7. +12
    -0
      session.py
  8. +69
    -0
      user.py

+ 35
- 0
__init__.py Целия файл

@ -0,0 +1,35 @@
from sqlalchemy import create_engine
from sqlalchemy import Column, Integer, TEXT,VARCHAR
from sqlalchemy.ext.declarative import declarative_base
engine = create_engine('mysql+pymysql://root:yyj0010YYJ@10.23.174.207/cloud',encoding="utf-8",echo=True)
base = declarative_base()
class User(base):
__tablename__ = 'users'
user_id = Column('user_id', VARCHAR(20), primary_key=True)
password = Column('password', TEXT, nullable=False)
class predict(base):
__tablename__= 'predictcouplet'
up = Column('up',VARCHAR(20),primary_key=True)
down= Column('down',VARCHAR(20),primary_key=True)
class train(base):
__tablename__= 'trainingcouplet'
up = Column('up',VARCHAR(20),primary_key=True)
down= Column('down',VARCHAR(20),primary_key=True)
class evaluate(base):
__tablename__= 'evaluatecouplet'
up = Column('up',VARCHAR(20),primary_key=True)
down= Column('down',VARCHAR(20),primary_key=True)
popular=Column('popular',Integer)
base.metadata.create_all(engine) # 创建表结构

+ 133
- 0
app.py Целия файл

@ -0,0 +1,133 @@
from flask import Flask
from flask import render_template
from flask import request
from flask import redirect,url_for
from code1.model import Model
import session
import socket
import random
from __init__ import predict,train,evaluate
#获取本机电脑名
app = Flask(__name__)
import user
import couplet
vocab_file = 'code1/data/vocabs'
model_dir = 'code1/output'
m = Model(
None, None, None, None, vocab_file,
num_units=1024, layers=4, dropout=0.2,
batch_size=32, learning_rate=0.0001,
output_dir=model_dir,
restore_model=True, init_train=False, init_infer=True)
@app.route("/")
def index():
return render_template("homepage.html",ip=ip)
@app.route("/homepage",methods=['GET'])
def homepage():
return render_template("homepage.html",ip=ip)
@app.route("/game1",methods=['GET','post'])
def game1():
if request.method == 'GET':
return render_template("game1.html",ip=ip)
else:
upper = request.form.get("upper", "")
input=upper
lower=m.infer(' '.join(input))
lower = ''.join(lower.split(' '))
return render_template("game1_result.html",lower=lower,upper=upper,ip=ip)
@app.route("/judge",methods=['GET','POST'])
def judge():
result= request.form.get("result", "")
upper = request.form.get("upper")
lower = request.form.get("lower")
u = couplet.Couplet()
if(int(result)==1):
u.to_evaluation(up=upper,down=lower)
else:
u.to_predict(up=upper,down=lower)
return render_template("game1_back.html",ip=ip)
@app.route("/game2",methods=['GET','post'])
def game2():
if request.method == 'GET':
u = couplet.Couplet()
pre = u.db_session.query(predict).all()
up=[]
for i in pre:
up.append(i.up)
up=up[random.randint(0, len(up)-1)]
return render_template("game2.html",up=up,ip=ip)
else:
up = request.form.get("up")
down= request.form.get("down")
u = couplet.Couplet()
u.to_evaluation(up=up,down=down)
return render_template("game2_back.html",ip=ip)
@app.route("/game3",methods=['GET','post'])
def game3():
if request.method == 'GET':
u = couplet.Couplet()
pre = u.db_session.query(evaluate).all()
up=[]
down=[]
for i in pre:
up.append(i.up)
down.append(i.down)
temp=random.randint(0,len(up)-1)
up=up[temp]
down=down[temp]
return render_template("game3.html",up=up,down=down,ip=ip)
else:
result = request.form.get("result", "")
up = request.form.get("up")
down= request.form.get("down")
print(result,up,down)
if(result=='1'):
u = couplet.Couplet()
u.add_popular(up=up, down=down,popular=1)
else:
u = couplet.Couplet()
u.minus_popular(up=up, down=down, popular=1)
return render_template("game3_back.html",ip=ip)
@app.route("/register", methods=['GET',"POST"])
def register():
if request.method=='GET':
return render_template("register.html",ip=ip)
else:
user_id = request.form.get("user_id", "")
password = request.form.get("password", "")
u = user.Users()
code, message = u.register(user_id=user_id, password=password)
if code==200:
return """<a href="http://{}/login" target="_self">注册成功,点击登陆</a> """.format(ip)
else:
return """<a href="http://{}/register" target="_self">注册失败,点击重新注册</a> """.format(ip)
@app.route("/login", methods=["GET","POST"])
def login():
if request.method=='GET':
return render_template("login.html")
else:
user_id = request.form.get("user_id", "")
password = request.form.get("password", "")
u = user.Users()
code, message = u.login(user_id=user_id, password=password)
if code==200:
return redirect(url_for('homepage'))
else:
return """<a href="http://{}/login" target="_self">用户名或密码错误,点击重新登陆</a> """.format(ip)
if __name__ == '__main__':
app.run("127.0.0.1",port=5000)

+ 73
- 0
couplet.py Целия файл

@ -0,0 +1,73 @@
import session
from __init__ import predict,train,evaluate
class Couplet(session.ORMsession):
def __init__(self):
session.ORMsession.__init__(self)
def send_up(self,up:str):
return 'asda'
def to_train(self,up:str,down:str):
try:
couplet=train(up=up,down=down)
self.db_session.add(couplet)
self.db_session.commit()
except BaseException as e:
return 530, "{}".format(str(e))
return 200
def to_predict(self,up:str,down:str):
try:
couplet = predict(up=up,down=down)
self.db_session.add(couplet)
self.db_session.commit()
except BaseException as e:
return 530, "{}".format(str(e))
return 200
def to_evaluation(self,up:str,down:str):
try:
couplet = evaluate(up=up, down=down,popular=0)
self.db_session.add(couplet)
self.db_session.commit()
self.db_session.rollback()
except BaseException as e:
return 530, "{}".format(str(e))
return 200
def add_popular(self,up:str,down:str,popular:int):
try:
self.db_session.query(evaluate).filter(evaluate.up==up,evaluate.down==down).update({'evaluate.popular':evaluate.popular+popular})
self.db_session.commit()
except BaseException as e:
return 530, "{}".format(str(e))
return 200
def minus_popular(self,up:str,down:str,popular:int):
try:
couplet = evaluate()
self.db_session.query(evaluate).filter(evaluate.up == up, evaluate.down == down).update(
{'evaluate.popular': evaluate.popular - popular})
self.db_session.commit()
except BaseException as e:
return 530, "{}".format(str(e))
return 200
def change_eva(self):
try:
self.db_session.query(evaluate).filter(evaluate.popular<=-10).delete()
row=self.db_session.query(evaluate).filter(evaluate.popular>=0).all()
up=[]
down=[]
for i in row:
up.append(i.up)
down.append()
self.db_session.query(evaluate).filter(evaluate.popular >=10).delete()
self.db_session.commit()
for i in range(0,len(up)):
couplet=train(up=up[i],down=down[i])
self.db_session.add(couplet)
except BaseException as e:
return 530, "{}".format(str(e))

+ 35
- 0
error.py Целия файл

@ -0,0 +1,35 @@
error_code = {
401: "authorization fail.",
511: "non exist user id {}",
512: "exist user id {}",
513: "non exist store id {}",
514: "exist store id {}",
515: "non exist book id {}",
516: "exist book id {}",
517: "stock level low, book id {}",
518: "invalid order id {}",
519: "not sufficient funds, order id {}",
520: "non qualified book.",
521: "",
522: "",
523: "",
524: "",
525: "",
526: "",
527: "",
528: "",
}
def error_non_exist_user_id(user_id):
return 511, error_code[511].format(user_id)
def error_exist_user_id(user_id):
return 512, error_code[512].format(user_id)
def error_authorization_fail():
return 401, error_code[401]
def error_and_message(code, message):
return code, message

+ 234
- 0
model.py Целия файл

@ -0,0 +1,234 @@
import tensorflow as tf
import seq2seq
import bleu
import reader
from os import path
import random
class Model():
def __init__(self, train_input_file, train_target_file,
test_input_file, test_target_file, vocab_file,
num_units, layers, dropout,
batch_size, learning_rate, output_dir,
save_step = 100, eval_step = 1000,
param_histogram=False, restore_model=False,
init_train=True, init_infer=False):
self.num_units = num_units
self.layers = layers
self.dropout = dropout
self.batch_size = batch_size
self.learning_rate = learning_rate
self.save_step = save_step
self.eval_step = eval_step
self.param_histogram = param_histogram
self.restore_model = restore_model
self.init_train = init_train
self.init_infer = init_infer
if init_train:
self.train_reader = reader.SeqReader(train_input_file,
train_target_file, vocab_file, batch_size)
self.train_reader.start()
self.train_data = self.train_reader.read()
self.eval_reader = reader.SeqReader(test_input_file, test_target_file,
vocab_file, batch_size)
self.eval_reader.start()
self.eval_data = self.eval_reader.read()
self.model_file = path.join(output_dir, 'model.ckpl')
self.log_writter = tf.summary.FileWriter(output_dir)
if init_train:
self._init_train()
self._init_eval()
if init_infer:
self.infer_vocabs = reader.read_vocab(vocab_file)
self.infer_vocab_indices = dict((c, i) for i, c in
enumerate(self.infer_vocabs))
self._init_infer()
self.reload_infer_model()
def gpu_session_config(self):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return config
def _init_train(self):
self.train_graph = tf.Graph()
with self.train_graph.as_default():
self.train_in_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.train_in_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
self.train_target_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.train_target_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
output = seq2seq.seq2seq(self.train_in_seq, self.train_in_seq_len,
self.train_target_seq, self.train_target_seq_len,
len(self.train_reader.vocabs),
self.num_units, self.layers, self.dropout)
self.train_output = tf.argmax(tf.nn.softmax(output), 2)
self.loss = seq2seq.seq_loss(output, self.train_target_seq,
self.train_target_seq_len)
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(
gradients, 0.5)
self.train_op = tf.train.AdamOptimizer(
learning_rate=self.learning_rate
).apply_gradients(zip(clipped_gradients,params))
if self.param_histogram:
for v in tf.trainable_variables():
tf.summary.histogram('train_' + v.name, v)
tf.summary.scalar('loss', self.loss)
self.train_summary = tf.summary.merge_all()
self.train_init = tf.global_variables_initializer()
self.train_saver = tf.train.Saver()
self.train_session = tf.Session(graph=self.train_graph,
config=self.gpu_session_config())
def _init_eval(self):
self.eval_graph = tf.Graph()
with self.eval_graph.as_default():
self.eval_in_seq = tf.placeholder(tf.int32, shape=[self.batch_size, None])
self.eval_in_seq_len = tf.placeholder(tf.int32, shape=[self.batch_size])
self.eval_output = seq2seq.seq2seq(self.eval_in_seq,
self.eval_in_seq_len, None, None,
len(self.eval_reader.vocabs),
self.num_units, self.layers, self.dropout)
if self.param_histogram:
for v in tf.trainable_variables():
tf.summary.histogram('eval_' + v.name, v)
self.eval_summary = tf.summary.merge_all()
self.eval_saver = tf.train.Saver()
self.eval_session = tf.Session(graph=self.eval_graph,
config=self.gpu_session_config())
def _init_infer(self):
self.infer_graph = tf.Graph()
with self.infer_graph.as_default():
self.infer_in_seq = tf.placeholder(tf.int32, shape=[1, None])
self.infer_in_seq_len = tf.placeholder(tf.int32, shape=[1])
self.infer_output = seq2seq.seq2seq(self.infer_in_seq,
self.infer_in_seq_len, None, None,
len(self.infer_vocabs),
self.num_units, self.layers, self.dropout)
self.infer_saver = tf.train.Saver()
self.infer_session = tf.Session(graph=self.infer_graph,
config=self.gpu_session_config())
def train(self, epochs, start=0):
if not self.init_train:
raise Exception('Train graph is not inited!')
with self.train_graph.as_default():
if path.isfile(self.model_file + '.meta') and self.restore_model:
print("Reloading model file before training.")
self.train_saver.restore(self.train_session, self.model_file)
else:
self.train_session.run(self.train_init)
total_loss = 0
for step in range(start, epochs):
data = next(self.train_data)
in_seq = data['in_seq']
in_seq_len = data['in_seq_len']
target_seq = data['target_seq']
target_seq_len = data['target_seq_len']
output, loss, train, summary = self.train_session.run(
[self.train_output, self.loss, self.train_op, self.train_summary],
feed_dict={
self.train_in_seq: in_seq,
self.train_in_seq_len: in_seq_len,
self.train_target_seq: target_seq,
self.train_target_seq_len: target_seq_len})
total_loss += loss
self.log_writter.add_summary(summary, step)
if step % self.save_step == 0:
self.train_saver.save(self.train_session, self.model_file)
print("Saving model. Step: %d, loss: %f" % (step,
total_loss / self.save_step))
# print sample output
sid = random.randint(0, self.batch_size-1)
input_text = reader.decode_text(in_seq[sid],
self.eval_reader.vocabs)
output_text = reader.decode_text(output[sid],
self.train_reader.vocabs)
target_text = reader.decode_text(target_seq[sid],
self.train_reader.vocabs).split(' ')[1:]
target_text = ' '.join(target_text)
print('******************************')
print('src: ' + input_text)
print('output: ' + output_text)
print('target: ' + target_text)
if step % self.eval_step == 0:
bleu_score = self.eval(step)
print("Evaluate model. Step: %d, score: %f, loss: %f" % (
step, bleu_score, total_loss / self.save_step))
eval_summary = tf.Summary(value=[tf.Summary.Value(
tag='bleu', simple_value=bleu_score)])
self.log_writter.add_summary(eval_summary, step)
if step % self.save_step == 0:
total_loss = 0
def eval(self, train_step):
with self.eval_graph.as_default():
self.eval_saver.restore(self.eval_session, self.model_file)
bleu_score = 0
target_results = []
output_results = []
for step in range(0, self.eval_reader.data_size):
data = next(self.eval_data)
in_seq = data['in_seq']
in_seq_len = data['in_seq_len']
target_seq = data['target_seq']
target_seq_len = data['target_seq_len']
outputs = self.eval_session.run(
self.eval_output,
feed_dict={
self.eval_in_seq: in_seq,
self.eval_in_seq_len: in_seq_len})
for i in range(len(outputs)):
output = outputs[i]
target = target_seq[i]
output_text = reader.decode_text(output,
self.eval_reader.vocabs).split(' ')
target_text = reader.decode_text(target[1:],
self.eval_reader.vocabs).split(' ')
prob = int(self.eval_reader.data_size * self.batch_size / 10)
target_results.append([target_text])
output_results.append(output_text)
if random.randint(1, prob) == 1:
print('====================')
input_text = reader.decode_text(in_seq[i],
self.eval_reader.vocabs)
print('src:' + input_text)
print('output: ' + ' '.join(output_text))
print('target: ' + ' '.join(target_text))
return bleu.compute_bleu(target_results, output_results)[0] * 100
def reload_infer_model(self):
with self.infer_graph.as_default():
self.infer_saver.restore(self.infer_session, self.model_file)
def infer(self, text):
if not self.init_infer:
raise Exception('Infer graph is not inited!')
with self.infer_graph.as_default():
in_seq = reader.encode_text(text.split(' ') + ['</s>',],
self.infer_vocab_indices)
in_seq_len = len(in_seq)
outputs = self.infer_session.run(self.infer_output,
feed_dict={
self.infer_in_seq: [in_seq],
self.infer_in_seq_len: [in_seq_len]})
output = outputs[0]
output_text = reader.decode_text(output, self.infer_vocabs)
return output_text

+ 157
- 0
seq2seq.py Целия файл

@ -0,0 +1,157 @@
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.python.layers import core as layers_core
def getLayeredCell(layer_size, num_units, input_keep_prob,
output_keep_prob=1.0):
return rnn.MultiRNNCell([rnn.DropoutWrapper(rnn.BasicLSTMCell(num_units),
input_keep_prob, output_keep_prob) for i in range(layer_size)])
def bi_encoder(embed_input, in_seq_len, num_units, layer_size, input_keep_prob):
# encode input into a vector
bi_layer_size = int(layer_size / 2)
encode_cell_fw = getLayeredCell(bi_layer_size, num_units, input_keep_prob)
encode_cell_bw = getLayeredCell(bi_layer_size, num_units, input_keep_prob)
bi_encoder_output, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
cell_fw=encode_cell_fw,
cell_bw=encode_cell_bw,
inputs=embed_input,
sequence_length=in_seq_len,
dtype=embed_input.dtype,
time_major=False)
# concat encode output and state
encoder_output = tf.concat(bi_encoder_output, -1)
encoder_state = []
for layer_id in range(bi_layer_size):
encoder_state.append(bi_encoder_state[0][layer_id])
encoder_state.append(bi_encoder_state[1][layer_id])
encoder_state = tuple(encoder_state)
return encoder_output, encoder_state
def attention_decoder_cell(encoder_output, in_seq_len, num_units, layer_size,
input_keep_prob):
attention_mechanim = tf.contrib.seq2seq.BahdanauAttention(num_units,
encoder_output, in_seq_len, normalize=True)
# attention_mechanim = tf.contrib.seq2seq.LuongAttention(num_units,
# encoder_output, in_seq_len, scale = True)
cell = getLayeredCell(layer_size, num_units, input_keep_prob)
cell = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanim,
attention_layer_size=num_units)
return cell
def decoder_projection(output, output_size):
return tf.layers.dense(output, output_size, activation=None,
use_bias=False, name='output_mlp')
def train_decoder(encoder_output, in_seq_len, target_seq, target_seq_len,
encoder_state, num_units, layers, embedding, output_size,
input_keep_prob, projection_layer):
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
helper = tf.contrib.seq2seq.TrainingHelper(
target_seq, target_seq_len, time_major=False)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
return outputs.rnn_output
def infer_decoder(encoder_output, in_seq_len, encoder_state, num_units, layers,
embedding, output_size, input_keep_prob, projection_layer):
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
# TODO: start tokens and end tokens are hard code
"""
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
embedding, tf.fill([batch_size], 0), 1)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
"""
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=embedding,
start_tokens=tf.fill([batch_size], 0),
end_token=1,
initial_state=init_state,
beam_width=10,
output_layer=projection_layer,
length_penalty_weight=1.0)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
return outputs.sample_id
def seq2seq(in_seq, in_seq_len, target_seq, target_seq_len, vocab_size,
num_units, layers, dropout):
in_shape = tf.shape(in_seq)
batch_size = in_shape[0]
if target_seq != None:
input_keep_prob = 1 - dropout
else:
input_keep_prob = 1
projection_layer = layers_core.Dense(vocab_size, use_bias=False)
# embedding input and target sequence
with tf.device('/cpu:0'):
embedding = tf.get_variable(
name='embedding',
shape=[vocab_size, num_units])
embed_input = tf.nn.embedding_lookup(embedding, in_seq, name='embed_input')
# encode and decode
encoder_output, encoder_state = bi_encoder(embed_input, in_seq_len,
num_units, layers, input_keep_prob)
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
if target_seq != None:
embed_target = tf.nn.embedding_lookup(embedding, target_seq,
name='embed_target')
helper = tf.contrib.seq2seq.TrainingHelper(
embed_target, target_seq_len, time_major=False)
else:
# TODO: start tokens and end tokens are hard code
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
embedding, tf.fill([batch_size], 0), 1)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
if target_seq != None:
return outputs.rnn_output
else:
return outputs.sample_id
def seq_loss(output, target, seq_len):
target = target[:, 1:]
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output,
labels=target)
batch_size = tf.shape(target)[0]
loss_mask = tf.sequence_mask(seq_len, tf.shape(output)[1])
cost = cost * tf.to_float(loss_mask)
return tf.reduce_sum(cost) / tf.to_float(batch_size)

+ 12
- 0
session.py Целия файл

@ -0,0 +1,12 @@
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy import or_
from sqlalchemy import Column,Integer,String
class ORMsession:
def __init__(self):
engine = create_engine('mysql+pymysql://root:yyj0010YYJ@10.23.174.207/cloud',encoding="utf-8", echo=True)
Session=sessionmaker(engine)
self.db_session = Session()

+ 69
- 0
user.py Целия файл

@ -0,0 +1,69 @@
from __init__ import User
import logging
import session
import error
import random
import string
import jwt
import time
#Users类,包括注册登录
class Users(session.ORMsession):
token_lifetime: int = 60
def __init__(self):
session.ORMsession.__init__(self)
def register(self,user_id:str,password:str) -> (int,str):
try:
if(len(password)==0):
return 202,"error"
user=User(user_id=user_id,password=password)
self.db_session.add(user)
self.db_session.commit()
except:
return error.error_exist_user_id(user_id)
return 200,"ok"
def unregister(self, user_id: str, password: str) -> (int, str):
try:
code, message = self.check_password(user_id, password)
if code != 200:
return code, message
user = self.db_session.query(User).filter(User.user_id==user_id).first()
self.db_session.delete(user)
self.db_session.commit()
except:
return error.error_authorization_fail()
return 200, "ok"
def check_password(self, user_id: str, password: str) -> (int, str):
user = self.db_session.query(User).filter(User.user_id==user_id).first()
if user is None:
return error.error_authorization_fail()
if password != user.password:
return error.error_authorization_fail()
return 200, "ok"
def login(self, user_id: str, password: str) -> (int, str, str):
try:
code, message = self.check_password(user_id, password)
if code != 200:
return code, message
self.db_session.commit()
except:
return error.error_authorization_fail()
return 200, "ok"
def change_password(self, user_id: str, old_password: str, new_password: str) -> (int,str):
try:
code, message = self.check_password(user_id, old_password)
if code != 200:
return code, message
self.db_session.query(User).filter(User.user_id== user_id)\
.update({'password': new_password})
self.db_session.commit()
except:
return error.error_authorization_fail()
return 200, "ok"

Зареждане…
Отказ
Запис