|
|
@ -3,7 +3,7 @@ |
|
|
|
## 介绍 |
|
|
|
|
|
|
|
|
|
|
|
本项目采用基于faster rcnn 的CTPN网络进行文本定位,修改原网络以进行多语言语言识别。利用神经网络预测文本行与anchor之间的偏移量。使用VGG16提取特征,在feature map上使用滑动窗口预测和anchor之间的偏移距离,之后将其输入到一个双向LSTM网络,获得序列特征。由于文本行长度差异较大,模型仅预测anchor高度,最后循环连接小尺度的文本框。 |
|
|
|
采用基于faster rcnn 的CTPN网络进行文本定位,修改原网络以进行多语言语言识别。利用神经网络预测文本行与anchor之间的偏移量。使用VGG16提取特征,在feature map上使用滑动窗口预测和anchor之间的偏移距离,之后将其输入到一个双向LSTM网络,获得序列特征。由于文本行长度差异较大,模型仅预测anchor高度,最后循环连接小尺度的文本框。 |
|
|
|
|
|
|
|
文本识别网络采用seq2seq模型以及attention机制。encoder端使用CNN以获得较高的并行速度,同时采用positional embedding表征位置信息; decoder端使用LSTM做解码器。考虑到数学公式的识别存在长距离依赖的问题,故引入attention机制。 |
|
|
|
训练数据结合了拍摄的图像以及课题组制作的含有混合latex公式及文字的图像,训练过程中进行了图像增强,以提高泛化能力。 |
|
|
|