Ver a proveniência

Update the report

main
kevinyao0901 há 1 mês
ascendente
cometimento
452fc80039
10 ficheiros alterados com 166 adições e 406 eliminações
  1. +166
    -219
      README.md
  2. +0
    -167
      Report/Scheme.md
  3. BIN
      Report/Scheme.pdf
  4. +0
    -4
      Report/png/Structure1.svg
  5. +0
    -4
      Report/png/Structure2.svg
  6. +0
    -4
      Report/png/Structure3.svg
  7. +0
    -4
      Report/png/Structure4.svg
  8. +0
    -4
      Report/png/Structure5.svg
  9. BIN
      Report/png/indexDb.png
  10. BIN
      Report/png/test_result.png

+ 166
- 219
README.md Ver ficheiro

@ -1,246 +1,193 @@
LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
# 实验报告:在 LevelDB 中构建二级索引的设计与实现
> **This repository is receiving very limited maintenance. We will only review the following types of changes.**
>
> * Fixes for critical bugs, such as data loss or memory corruption
> * Changes absolutely needed by internally supported leveldb clients. These typically fix breakage introduced by a language/standard library/OS update
## 实验目的
在 LevelDB 的基础上设计和实现一个支持二级索引的功能,优化特定字段的查询效率。通过此功能,用户能够根据字段值高效地检索对应的数据记录,而不需要遍历整个数据库。
[![ci](https://github.com/google/leveldb/actions/workflows/build.yml/badge.svg)](https://github.com/google/leveldb/actions/workflows/build.yml)
---
Authors: Sanjay Ghemawat (sanjay@google.com) and Jeff Dean (jeff@google.com)
## 实现思路
# Features
### 1. **二级索引的概念**
二级索引是一种额外的数据结构,用于加速某些特定字段的查询。在 LevelDB 中,键值对的存储是以 `key:value` 的形式。通过创建二级索引,我们将目标字段的值与原始 `key` 建立映射关系,存储在独立的索引数据库中,从而支持基于字段值的快速查询。
* Keys and values are arbitrary byte arrays.
* Data is stored sorted by key.
* Callers can provide a custom comparison function to override the sort order.
* The basic operations are `Put(key,value)`, `Get(key)`, `Delete(key)`.
* Multiple changes can be made in one atomic batch.
* Users can create a transient snapshot to get a consistent view of data.
* Forward and backward iteration is supported over the data.
* Data is automatically compressed using the [Snappy compression library](https://google.github.io/snappy/), but [Zstd compression](https://facebook.github.io/zstd/) is also supported.
* External activity (file system operations etc.) is relayed through a virtual interface so users can customize the operating system interactions.
# Documentation
[LevelDB library documentation](https://github.com/google/leveldb/blob/main/doc/index.md) is online and bundled with the source code.
# Limitations
* This is not a SQL database. It does not have a relational data model, it does not support SQL queries, and it has no support for indexes.
* Only a single process (possibly multi-threaded) can access a particular database at a time.
* There is no client-server support builtin to the library. An application that needs such support will have to wrap their own server around the library.
# Getting the Source
```bash
git clone --recurse-submodules https://github.com/google/leveldb.git
例如,原始数据如下:
```
k_1 : name:Customer#000000001|address:IVhzIApeRb|phone:25-989-741-2988
k_2 : name:Customer#000000002|address:XSTf4,NCwDVaW|phone:23-768-687-3665
k_3 : name:Customer#000000001|address:MG9kdTD2WBHm|phone:11-719-748-3364
```
为字段 `name` 创建索引后,索引数据库中的条目如下:
```
name:Customer#000000001-k_1 : k_1
name:Customer#000000001-k_3 : k_3
name:Customer#000000002-k_2 : k_2
```
# Building
### 2. **设计目标**
- **创建索引**:扫描数据库中的所有记录,基于指定字段提取值,并将字段值和原始 `key` 编码后写入二级索引数据库 `indexDb_`
- **查询索引**:在二级索引数据库中快速定位字段值对应的原始 `key`
- **删除索引**:移除二级索引数据库中所有与目标字段相关的条目。
This project supports [CMake](https://cmake.org/) out of the box.
---
### Build for POSIX
## 具体实现
Quick start:
### 1. **DBImpl 类的设计**
在 LevelDB 的核心类 `DBImpl` 中,增加了对二级索引的支持,包括:
- **索引字段管理**:使用成员变量 `fieldWithIndex_` 保存所有已经创建索引的字段名。
- **索引数据库**:使用成员变量 `indexDb_` 管理二级索引数据库。
```bash
mkdir -p build && cd build
cmake -DCMAKE_BUILD_TYPE=Release .. && cmake --build .
```cpp
class DBImpl : public DB {
private:
std::vector<std::string> fieldWithIndex_; // 已创建索引的字段列表
leveldb::DB* indexDb_; // 存储二级索引的数据库
};
```
### Building for Windows
First generate the Visual Studio 2017 project/solution files:
```cmd
mkdir build
cd build
cmake -G "Visual Studio 15" ..
### 2. **二级索引的创建**
`DBImpl` 中实现 `CreateIndexOnField` 方法,用于对指定字段创建二级索引:
- 遍历主数据库中的所有数据记录。
- 解析目标字段的值。
- 在索引数据库中写入二级索引条目,键为 `"fieldName:field_value-key"`,值为原始数据的键。
示例:
![error](./Report/png/indexDB.png)
#### 核心代码:
```cpp
Status DBImpl::CreateIndexOnField(const std::string& fieldName) {
// 检查字段是否已创建索引
for (const auto& field : fieldWithIndex_) {
if (field == fieldName) {
return Status::InvalidArgument("Index already exists for this field");
}
}
// 添加到已创建索引的字段列表
fieldWithIndex_.push_back(fieldName);
// 遍历主数据库,解析字段值并写入索引数据库
leveldb::ReadOptions read_options;
leveldb::Iterator* it = this->NewIterator(read_options);
for (it->SeekToFirst(); it->Valid(); it->Next()) {
std::string key = it->key().ToString();
std::string value = it->value().ToString();
// 提取字段值
size_t field_pos = value.find(fieldName + ":");
if (field_pos != std::string::npos) {
size_t value_start = field_pos + fieldName.size() + 1;
size_t value_end = value.find("|", value_start);
if (value_end == std::string::npos) value_end = value.size();
std::string field_value = value.substr(value_start, value_end - value_start);
std::string index_key = fieldName + ":" + field_value;
// 在索引数据库中创建条目
leveldb::Status s = indexDb_->Put(WriteOptions(), Slice(index_key), Slice(key));
if (!s.ok()) {
delete it;
return s;
}
}
}
delete it;
return Status::OK();
}
```
The default default will build for x86. For 64-bit run:
```cmd
cmake -G "Visual Studio 15 Win64" ..
---
### 3. **二级索引的查询**
`DBImpl` 中实现 `QueryByIndex` 方法,通过目标字段值查找对应的原始键:
- 在索引数据库中遍历 `fieldName:field_value` 开头的条目。
- 收集结果并返回。
#### 核心代码:
```cpp
std::vector<std::string> DBImpl::QueryByIndex(const std::string& fieldName) {
std::vector<std::string> results;
leveldb::ReadOptions read_options;
leveldb::Iterator* it = indexDb_->NewIterator(read_options);
for (it->Seek(fieldName); it->Valid(); it->Next()) {
std::string value = it->value().ToString();
if (!value.empty()) {
results.push_back(value);
}
}
delete it;
return results;
}
```
To compile the Windows solution from the command-line:
```cmd
devenv /build Debug leveldb.sln
---
### 4. **二级索引的删除**
`DBImpl` 中实现 `DeleteIndex` 方法,通过目标字段名移除对应的所有索引条目:
- 在 `fieldWithIndex_` 中移除字段。
- 遍历索引数据库,删除所有以 `fieldName:` 开头的条目。
#### 核心代码:
```cpp
Status DBImpl::DeleteIndex(const std::string& fieldName) {
auto it = std::find(fieldWithIndex_.begin(), fieldWithIndex_.end(), fieldName);
if (it == fieldWithIndex_.end()) {
return Status::NotFound("Index not found for this field");
}
// 从已创建索引列表中移除字段
fieldWithIndex_.erase(it);
// 遍历索引数据库,删除相关条目
leveldb::ReadOptions read_options;
leveldb::Iterator* it_index = indexDb_->NewIterator(read_options);
for (it_index->SeekToFirst(); it_index->Valid(); it_index->Next()) {
std::string index_key = it_index->key().ToString();
if (index_key.find(fieldName + ":") == 0) {
Status s = indexDb_->Delete(WriteOptions(), Slice(index_key));
if (!s.ok()) {
delete it_index;
return s;
}
}
}
delete it_index;
return Status::OK();
}
```
or open leveldb.sln in Visual Studio and build from within.
Please see the CMake documentation and `CMakeLists.txt` for more advanced usage.
# Contributing to the leveldb Project
> **This repository is receiving very limited maintenance. We will only review the following types of changes.**
>
> * Bug fixes
> * Changes absolutely needed by internally supported leveldb clients. These typically fix breakage introduced by a language/standard library/OS update
The leveldb project welcomes contributions. leveldb's primary goal is to be
a reliable and fast key/value store. Changes that are in line with the
features/limitations outlined above, and meet the requirements below,
will be considered.
Contribution requirements:
1. **Tested platforms only**. We _generally_ will only accept changes for
platforms that are compiled and tested. This means POSIX (for Linux and
macOS) or Windows. Very small changes will sometimes be accepted, but
consider that more of an exception than the rule.
2. **Stable API**. We strive very hard to maintain a stable API. Changes that
require changes for projects using leveldb _might_ be rejected without
sufficient benefit to the project.
3. **Tests**: All changes must be accompanied by a new (or changed) test, or
a sufficient explanation as to why a new (or changed) test is not required.
4. **Consistent Style**: This project conforms to the
[Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html).
To ensure your changes are properly formatted please run:
---
### 示例流程
1. 插入原始数据:
```
clang-format -i --style=file <file>
k_1 : name:Customer#000000001|address:IVhzIApeRb|phone:25-989-741-2988
k_2 : name:Customer#000000002|address:XSTf4,NCwDVaW|phone:23-768-687-3665
```
2. 创建索引:
- 调用 `CreateIndexOnField("name")`,索引数据库生成条目:
```
name:Customer#000000001-k_1 : k_1
name:Customer#000000002-k_2 : k_2
```
3. 查询索引:
- 调用 `QueryByIndex("name:Customer#000000001")`,返回 `["k_1"]`
4. 删除索引:
- 调用 `DeleteIndex("name")`,移除所有 `name:` 开头的索引条目。
We are unlikely to accept contributions to the build configuration files, such
as `CMakeLists.txt`. We are focused on maintaining a build configuration that
allows us to test that the project works in a few supported configurations
inside Google. We are not currently interested in supporting other requirements,
such as different operating systems, compilers, or build systems.
## Submitting a Pull Request
Before any pull request will be accepted the author must first sign a
Contributor License Agreement (CLA) at https://cla.developers.google.com/.
In order to keep the commit timeline linear
[squash](https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Squashing-Commits)
your changes down to a single commit and [rebase](https://git-scm.com/docs/git-rebase)
on google/leveldb/main. This keeps the commit timeline linear and more easily sync'ed
with the internal repository at Google. More information at GitHub's
[About Git rebase](https://help.github.com/articles/about-git-rebase/) page.
# Performance
Here is a performance report (with explanations) from the run of the
included db_bench program. The results are somewhat noisy, but should
be enough to get a ballpark performance estimate.
## Setup
We use a database with a million entries. Each entry has a 16 byte
key, and a 100 byte value. Values used by the benchmark compress to
about half their original size.
LevelDB: version 1.1
Date: Sun May 1 12:11:26 2011
CPU: 4 x Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
CPUCache: 4096 KB
Keys: 16 bytes each
Values: 100 bytes each (50 bytes after compression)
Entries: 1000000
Raw Size: 110.6 MB (estimated)
File Size: 62.9 MB (estimated)
## Write performance
The "fill" benchmarks create a brand new database, in either
sequential, or random order. The "fillsync" benchmark flushes data
from the operating system to the disk after every operation; the other
write operations leave the data sitting in the operating system buffer
cache for a while. The "overwrite" benchmark does random writes that
update existing keys in the database.
fillseq : 1.765 micros/op; 62.7 MB/s
fillsync : 268.409 micros/op; 0.4 MB/s (10000 ops)
fillrandom : 2.460 micros/op; 45.0 MB/s
overwrite : 2.380 micros/op; 46.5 MB/s
Each "op" above corresponds to a write of a single key/value pair.
I.e., a random write benchmark goes at approximately 400,000 writes per second.
Each "fillsync" operation costs much less (0.3 millisecond)
than a disk seek (typically 10 milliseconds). We suspect that this is
because the hard disk itself is buffering the update in its memory and
responding before the data has been written to the platter. This may
or may not be safe based on whether or not the hard disk has enough
power to save its memory in the event of a power failure.
## Read performance
We list the performance of reading sequentially in both the forward
and reverse direction, and also the performance of a random lookup.
Note that the database created by the benchmark is quite small.
Therefore the report characterizes the performance of leveldb when the
working set fits in memory. The cost of reading a piece of data that
is not present in the operating system buffer cache will be dominated
by the one or two disk seeks needed to fetch the data from disk.
Write performance will be mostly unaffected by whether or not the
working set fits in memory.
readrandom : 16.677 micros/op; (approximately 60,000 reads per second)
readseq : 0.476 micros/op; 232.3 MB/s
readreverse : 0.724 micros/op; 152.9 MB/s
LevelDB compacts its underlying storage data in the background to
improve read performance. The results listed above were done
immediately after a lot of random writes. The results after
compactions (which are usually triggered automatically) are better.
readrandom : 11.602 micros/op; (approximately 85,000 reads per second)
readseq : 0.423 micros/op; 261.8 MB/s
readreverse : 0.663 micros/op; 166.9 MB/s
Some of the high cost of reads comes from repeated decompression of blocks
read from disk. If we supply enough cache to the leveldb so it can hold the
uncompressed blocks in memory, the read performance improves again:
readrandom : 9.775 micros/op; (approximately 100,000 reads per second before compaction)
readrandom : 5.215 micros/op; (approximately 190,000 reads per second after compaction)
## Repository contents
See [doc/index.md](doc/index.md) for more explanation. See
[doc/impl.md](doc/impl.md) for a brief overview of the implementation.
The public interface is in include/leveldb/*.h. Callers should not include or
rely on the details of any other header files in this package. Those
internal APIs may be changed without warning.
Guide to header files:
* **include/leveldb/db.h**: Main interface to the DB: Start here.
* **include/leveldb/options.h**: Control over the behavior of an entire database,
and also control over the behavior of individual reads and writes.
* **include/leveldb/comparator.h**: Abstraction for user-specified comparison function.
If you want just bytewise comparison of keys, you can use the default
comparator, but clients can write their own comparator implementations if they
want custom ordering (e.g. to handle different character encodings, etc.).
* **include/leveldb/iterator.h**: Interface for iterating over data. You can get
an iterator from a DB object.
* **include/leveldb/write_batch.h**: Interface for atomically applying multiple
updates to a database.
测试结果:
* **include/leveldb/slice.h**: A simple module for maintaining a pointer and a
length into some other byte array.
* **include/leveldb/status.h**: Status is returned from many of the public interfaces
and is used to report success and various kinds of errors.
![error](Report\png\test_result.png)
* **include/leveldb/env.h**:
Abstraction of the OS environment. A posix implementation of this interface is
in util/env_posix.cc.
---
* **include/leveldb/table.h, include/leveldb/table_builder.h**: Lower-level modules that most
clients probably won't use directly.
## 总结
本实验通过在 `DBImpl` 中集成索引管理功能,实现了对二级索引的创建、查询和删除。二级索引数据存储在独立的 `indexDb_` 中,通过高效的键值映射提升了字段值查询的效率。

+ 0
- 167
Report/Scheme.md Ver ficheiro

@ -1,167 +0,0 @@
### **实验计划说明报告:基于 `embedded_secondary-index` 的 `LevelDB` 实现及实验**
------
#### **1. 实验背景**
LevelDB 是一个高性能的持久化键值存储引擎,提供简单的 `API` 用于高效的读写操作。然而,传统 `LevelDB` 仅支持基于主键的快速查询,而无法直接支持对二级属性的查询需求。在许多场景(如搜索系统或复杂索引系统)中,需要支持高效的二级索引查询。
本实验计划基于 `embedded_secondary-index` 的设计扩展了 `LevelDB`,支持通过嵌入式布隆过滤器实现的二级索引查询,并引入了 Top-K 查询功能以提升二级属性查询的实用性和效率。
------
#### **2. 实验目标**
- 实现一个支持二级索引查询的 `LevelDB` 扩展版本。
- 验证嵌入式二级索引的设计在读写性能和查询效率上的优越性。
- 测试支持二级索引查询的数据库在 Top-K 查询功能上的性能表现。
------
#### **3. 系统设计**
本实验采用 **`embedded_secondary-index`** 的实现方式,将二级索引嵌入到 `LevelDB` 的原有数据结构中。以下是系统的核心设计:
##### **3.1 数据结构设计**
1. **`MemTable`**
- 在内存中维护主键与二级属性的数据映射关系。
- 对二级属性构建布隆过滤器以提高查询效率。
2. **`SSTable`**
- 每个 `SSTable` 包含多个数据块(存储键值对)、元数据块(记录索引信息)和布隆过滤器块(分别用于主键和二级属性的快速过滤)。
- 数据写入磁盘时,布隆过滤器被嵌入到 `SSTable` 中,避免额外的索引文件。
3. **布隆过滤器**
- 对每个数据块的二级属性计算布隆过滤器位串。
- 通过内存中加载的布隆过滤器快速筛选可能包含目标数据的块,减少磁盘 IO。
##### **3.2 查询算法设计**
1. **Top-K 查询**
- 查询时,先通过布隆过滤器筛选出可能的 `SSTable` 和数据块。
- 使用小顶堆保存查询结果,根据 `sequence_number`(插入顺序)排序,最终返回最近的 K 条记录。
2. **层次化查询流程**
- 优先从 `MemTable` 查询;
- 若未命中,则逐层遍历 `SSTable`
------
#### **4. 实验步骤**
##### **4.1 系统实现**
1. 修改 `LevelDB` 的源码以支持二级索引嵌入:
- 更新 `SSTable` 数据块结构,增加布隆过滤器支持;
- 修改 `Write``Flush` 流程,嵌入二级索引信息。
2. 扩展数据库的 `API`
- 实现二级索引的查询接口(`RangeLookUp` 和 `Top-K LookUp`)。
3. 使用 Google Test 编写单元测试,验证功能正确性。
##### **4.2 计划性能测试**
1. **数据准备**
- 生成包含主键和二级属性的模拟数据集。
- 数据格式示例:
```json
{
"primary_key": "id12345",
"secondary_key": "tag123",
"value": "This is a test record."
}
```
2. **测试指标**
- 数据写入性能(`QPS`)。
- 基于二级属性的查询性能:
- 单次查询耗时;
- 不同 Top-K 参数下的查询性能;
- 对比嵌入式二级索引与传统外部索引在查询性能上的表现。
3. **测试工具**
计划使用 Benchmark 工具测量数据库的吞吐量与延迟。
------
#### **5. 附录:系统结构图**
1. 下面提供一些建议的结构图,可以清晰说明基于 **`embedded_secondary-index`** 的设计和实现,适合配合实验报告使用:
------
### **1. 系统整体架构图**
**图示内容**
展示 `embedded_secondary-index` 的整体设计,包括主键、二级属性的存储方式,以及布隆过滤器与 `SSTable` 的嵌入关系。
**图示结构**
![error](./png/Structure1.svg)
- 要点说明:
1. 二级索引与布隆过滤器紧密嵌入 `SSTable` 的元数据块中,避免外部索引文件的开销。
2. 查询时,通过布隆过滤器快速过滤非相关 `SSTable`,只访问可能的匹配块。
------
### **2. 数据写入流程图**
**图示内容**
描述写入数据时如何解析主键和二级属性,并更新布隆过滤器和 `SSTable` 的流程。
**图示结构**
![error](./png/Structure2.svg)
- **要点说明**:
写入过程中,自动解析主键和二级属性,实时更新布隆过滤器,确保写入操作高效完成。
------
### **3. 数据查询流程图**
**图示内容**
展示基于二级属性查询的具体步骤,包括布隆过滤器筛选、块访问和结果返回。
**图示结构**
![error](./png/Structure3.svg)
- **要点说明**:
布隆过滤器用于筛选目标 `SSTable`,通过小顶堆实现 Top-K 的排序与记录收集,保证查询的效率。
------
### **4. `SSTable` 布局示意图**
**图示内容**
展示 `SSTable` 内部如何组织主键、二级属性和布隆过滤器的布局。
**图示结构**
![error](./png/Structure4.svg)
- **要点说明:**
1. 每个 `SSTable` 包含数据块(Data Blocks)、元数据块(Meta Block)和布隆过滤器块(Bloom Filter Blocks)。
2. 二级属性的布隆过滤器和主键布隆过滤器分别存储,提供不同维度的快速索引。
------
### **5. Top-K 查询堆排序示意图**
**图示内容**
以小顶堆为核心,说明查询结果如何按照时间顺序(`sequence_number`)进行排序。
**图示结构**
![error](./png/Structure5.svg)
- **要点说明**:
查询过程中,维护一个固定大小的小顶堆,仅保留最近的 K 条记录,大幅提高排序效率。
------

BIN
Report/Scheme.pdf Ver ficheiro


+ 0
- 4
Report/png/Structure1.svg
A apresentação das diferenças no ficheiro foi suprimida por ser demasiado grande
Ver ficheiro


+ 0
- 4
Report/png/Structure2.svg
A apresentação das diferenças no ficheiro foi suprimida por ser demasiado grande
Ver ficheiro


+ 0
- 4
Report/png/Structure3.svg
A apresentação das diferenças no ficheiro foi suprimida por ser demasiado grande
Ver ficheiro


+ 0
- 4
Report/png/Structure4.svg
A apresentação das diferenças no ficheiro foi suprimida por ser demasiado grande
Ver ficheiro


+ 0
- 4
Report/png/Structure5.svg
A apresentação das diferenças no ficheiro foi suprimida por ser demasiado grande
Ver ficheiro


BIN
Report/png/indexDb.png Ver ficheiro

Antes Depois
Largura: 432  |  Altura: 185  |  Tamanho: 22 KiB

BIN
Report/png/test_result.png Ver ficheiro

Antes Depois
Largura: 616  |  Altura: 152  |  Tamanho: 22 KiB

Carregando…
Cancelar
Guardar