OS2021_Project1.Shell
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

716 lines
13 KiB

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <dirent.h>
#include <signal.h>
#include <errno.h>
#include <fcntl.h>
#include <termcap.h>
#include <termios.h>
#include <curses.h>
#include <limits.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/times.h>
#include <sys/time.h>
#include <sys/select.h>
#include <minix/com.h>
#include <minix/config.h>
#include <minix/type.h>
#include <minix/endpoint.h>
#include <minix/const.h>
#include <minix/u64.h>
#include <paths.h>
#include <minix/procfs.h>
#include "yeeshell.h"
/* record cmdline history */
char *history[CMDLINE_HISTORY_MAX_QUANTITY];
int cmdline_amount = 0;
struct proc *proc = NULL, *prev_proc = NULL;
int nr_total;
unsigned int nr_procs, nr_tasks;
int main()
{
char *cmdline = NULL, *pwd = NULL;
char *args[ARGS_MAX_QUANTITY];
int status = 1;
pwd = (char *)calloc(PATH_MAX_SIZE, sizeof(char));
for (int i = 0; i < CMDLINE_HISTORY_MAX_QUANTITY; i++)
{
history[i] = (char *)calloc(CMDLINE_MAX_SIZE, sizeof(char));
}
/* execute the shell's read, parse and execution loop */
do
{
if (!getcwd(pwd, PATH_MAX_SIZE))
{
printf("yeeshell: The current path cannot be obtained!\n");
exit(0);
}
printf("[root@yeeshell %s]# ", pwd);
cmdline = readline();
strcpy(history[cmdline_amount++], cmdline);
status = execute(cmdline, args);
free(cmdline);
} while (status);
for (int i = 0; i < CMDLINE_HISTORY_MAX_QUANTITY; i++)
{
free(history[i]);
}
exit(EXIT_SUCCESS);
}
char *readline()
{
char *cmdline = NULL;
ssize_t bufsize = 0;
getline(&cmdline, &bufsize, stdin);
return cmdline;
}
int parseline(char *cmdline, char **args)
{
static char array[CMDLINE_MAX_SIZE]; /* holds local copy of command line */
char *buf = array; /* ptr that traverses command line */
char *delim; /* points to first space delimiter */
int argc; /* number of args */
int bg; /* background job? */
strcpy(buf, cmdline);
buf[strlen(buf) - 1] = ' '; /* replace trailing '\n' with space */
while (*buf && (*buf == ' ')) /* ignore leading spaces */
{
buf++;
}
/* Build the argv list */
argc = 0;
if (*buf == '\'')
{
buf++;
delim = strchr(buf, '\'');
}
else
{
delim = strchr(buf, ' ');
}
while (delim)
{
args[argc++] = buf;
*delim = '\0';
buf = delim + 1;
while (*buf && (*buf == ' ')) /* ignore spaces */
{
buf++;
}
if (*buf == '\'')
{
buf++;
delim = strchr(buf, '\'');
}
else
{
delim = strchr(buf, ' ');
}
}
args[argc] = NULL;
if (argc == 0) /* ignore blank line */
{
return 1;
}
/* should the job run in the background? */
if ((bg = (*args[argc - 1] == '&')) != 0)
{
args[--argc] = NULL;
}
return bg;
}
int check_redirect(char **args, char *redirect_filename, char **redirect_args)
{
int i = 0, j = 0, redirect_flag = REDIRECT_NO;
while (args[i] != NULL)
{
if (!strcmp(args[i], ">"))
{
redirect_flag = REDIRECT_OUT;
break;
}
else if (!strcmp(args[i], "<"))
{
redirect_flag = REDIRECT_IN;
break;
}
i++;
}
if ((redirect_flag == 1) || (redirect_flag == 2))
{
strcpy(redirect_filename, args[i + 1]);
for (j = 0; j < i; j++)
{
redirect_args[j] = args[j];
}
}
return redirect_flag;
}
int do_redirect(int redirect_flag, char *redirect_filename, char **redirect_args)
{
pid_t pid;
int fd = 1;
if ((pid = fork()) == 0) /* Child process */
{
if (redirect_flag == 1) /* in or out? */
{
fd = open(redirect_filename, O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR | S_IXUSR);
close(1);
dup(fd);
}
else if (redirect_flag == 2)
{
fd = open(redirect_filename, O_RDONLY, S_IRUSR);
close(0);
dup(fd);
}
if (execvp(redirect_args[0], redirect_args) <= 0)
{
printf("%s: Command not found\n", redirect_args[0]);
exit(0);
}
close(fd);
}
else /* parent process */
{
waitpid(pid, NULL, 0);
}
return 1;
}
int check_pipe(char **args, char **pipe_arg_1, char **pipe_arg_2)
{
int pipe_flag = 0, i = 0, j = 0;
while (args[i] != NULL)
{
if (!strcmp(args[i], "|"))
{
pipe_flag = 1;
break;
}
pipe_arg_1[j++] = args[i++];
}
pipe_arg_1[j] = NULL;
j = 0;
i++;
while (args[i] != NULL)
{
pipe_arg_2[j++] = args[i++];
}
pipe_arg_2[j] = NULL;
return pipe_flag;
}
int do_pipe(char **pipe_arg_1, char **pipe_arg_2)
{
int fds[2];
pipe(fds);
pid_t prog_1, prog_2;
if ((prog_1 = fork()) == 0) /* Child process 1 */
{
close(1);
dup(fds[1]);
close(fds[0]);
close(fds[1]);
if (execvp(pipe_arg_1[0], pipe_arg_1) <= 0)
{
printf("%s: Command not found\n", pipe_arg_1[0]);
exit(0);
}
}
if ((prog_2 = fork()) == 0) /* Child process 1 */
{
dup2(fds[0], 0);
close(fds[0]);
close(fds[1]);
if (execvp(pipe_arg_2[0], pipe_arg_2) <= 0)
{
printf("%s: Command not found\n", pipe_arg_2[0]);
exit(0);
}
}
close(fds[0]);
close(fds[1]);
waitpid(prog_1, NULL, 0);
waitpid(prog_2, NULL, 0);
return 1;
}
int do_bg_fg(char **args, int bg)
{
pid_t pid;
if ((pid = fork()) == 0)
{
if (execvp(args[0], args) <= 0)
{
printf("%s: Command not found\n", args[0]);
exit(0);
}
}
else
{
if (bg)
{
signal(SIGCHLD, SIG_IGN);
}
else
{
waitpid(pid, NULL, 0);
}
}
return 1;
}
int execute(char *cmdline, char **args)
{
int bg = 0, i = 0, redirect_flag = 0, pipe_num = 0;
pid_t pid;
char *redirect_filename = NULL;
char *redirect_args[ARGS_MAX_QUANTITY];
char *pipe_arg_1[ARGS_MAX_QUANTITY];
char *pipe_arg_2[ARGS_MAX_QUANTITY];
redirect_filename = (char *)calloc(REDIRECT_FILENAME_MAX_SIZE, sizeof(char));
memset(redirect_args, NULL, sizeof(redirect_args));
bg = parseline(cmdline, args);
redirect_flag = check_redirect(args, redirect_filename, redirect_args);
pipe_num = check_pipe(args, pipe_arg_1, pipe_arg_2);
if (args[0] == NULL)
{
return 1;
}
if (pipe_num == 0) /* no pipe */
{
if (!built_in(args)) /* built-in cmd? */
{
if (redirect_flag != 0) /* redirection? */
{
return do_redirect(redirect_flag, redirect_filename, redirect_args);
}
else
{
return do_bg_fg(args, bg);
}
}
else
{
return 1;
}
}
else
{
return do_pipe(pipe_arg_1, pipe_arg_2);
}
}
int built_in(char **args)
{
if (!strcmp(args[0], "exit"))
{
exit(0);
}
else if (!strcmp(args[0], "cd"))
{
return builtin_cd(args);
}
else if (!strcmp(args[0], "history"))
{
return builtin_history(args);
}
else if (!strcmp(args[0], "mytop"))
{
return builtin_mytop();
}
else
{
return 0;
}
}
int builtin_cd(char **args)
{
if (args[1] == NULL)
{
return 1;
}
else
{
if (chdir(args[1]) != 0)
{
perror("yeeshell");
}
return 1;
}
}
int builtin_history(char **args)
{
int n = 0;
if (args[1] == NULL)
{
n = cmdline_amount;
}
else
{
n = atoi(args[1]) < cmdline_amount ? atoi(args[1]) : cmdline_amount;
}
printf("ID\tCommandline\n");
for (int i = 0; i < n; i++)
{
printf("%d\t%s\n", i + 1, history[i]);
}
return 1;
}
int builtin_mytop()
{
int memory_flag = 0, CPU_flag = 0;
memory_flag = mytop_memory();
CPU_flag = mytop_CPU();
if (!memory_flag)
{
return -1;
}
else if (!CPU_flag)
{
return -2;
}
else
{
return 1;
}
}
int mytop_memory()
{
FILE *fp = NULL;
int pagesize;
long total = 0, free = 0, cached = 0;
if ((fp = fopen("/proc/meminfo", "r")) == NULL)
{
return 0;
}
fscanf(fp, "%u %lu %lu %lu", &pagesize, &total, &free, &cached);
fclose(fp);
printf("memmory(KBytes):\t%ld total\t%ld free\t%ld cached\n", (pagesize * total) / 1024, (pagesize * free) / 1024, (pagesize * cached) / 1024);
return 1;
}
int mytop_CPU()
{
int cputimemode = 1;
getkinfo();
get_procs();
if (prev_proc == NULL)
{
get_procs();
}
print_procs(prev_proc, proc, cputimemode);
return 0;
}
void get_procs()
{
struct proc *p;
int i;
p = prev_proc;
prev_proc = proc;
proc = p;
if (proc == NULL)
{
proc = malloc(nr_total * sizeof(proc[0]));
if (proc == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(1);
}
}
for (i = 0; i < nr_total; i++)
proc[i].p_flags = 0;
parse_dir();
}
void parse_dir()
{
DIR *p_dir;
struct dirent *p_ent;
pid_t pid;
char *end;
if ((p_dir = opendir("/proc")) == NULL)
{
perror("opendir on " _PATH_PROC);
exit(1);
}
for (p_ent = readdir(p_dir); p_ent != NULL; p_ent = readdir(p_dir))
{
pid = strtol(p_ent->d_name, &end, 10);
if (!end[0] && pid != 0)
{
parse_file(pid);
}
}
closedir(p_dir);
}
void parse_file(pid_t pid)
{
char path[PATH_MAX], name[256], type, state;
int version, endpt, effuid;
unsigned long cycles_hi, cycles_lo;
FILE *fp;
struct proc *p;
int slot;
int i;
sprintf(path, "%d/psinfo", pid);
if ((fp = fopen(path, "r")) == NULL)
return;
if (fscanf(fp, "%d", &version) != 1)
{
fclose(fp);
return;
}
if (version != PSINFO_VERSION)
{
fputs("procfs version mismatch!\n", stderr);
exit(1);
}
if (fscanf(fp, " %c %d", &type, &endpt) != 2)
{
fclose(fp);
return;
}
slot = SLOT_NR(endpt);
if (slot < 0 || slot >= nr_total)
{
//fprintf(stderr, "top: unreasonable endpoint number %d\n", endpt);
fclose(fp);
return;
}
p = &proc[slot];
if (type == TYPE_TASK)
{
p->p_flags |= IS_TASK;
}
else if (type == TYPE_SYSTEM)
{
p->p_flags |= IS_SYSTEM;
}
p->p_endpoint = endpt;
p->p_pid = pid;
if (fscanf(fp, " %255s %c %d %d %lu %*u %lu %lu", name, &state, &p->p_blocked, &p->p_priority, &p->p_user_time, &cycles_hi, &cycles_lo) != 7)
{
fclose(fp);
return;
}
strncpy(p->p_name, name, sizeof(p->p_name) - 1);
p->p_name[sizeof(p->p_name) - 1] = 0;
if (state != STATE_RUN)
{
p->p_flags |= BLOCKED;
}
p->p_cpucycles[0] = make64(cycles_lo, cycles_hi);
p->p_memory = 0L;
if (!(p->p_flags & IS_TASK))
{
int j;
if ((j = fscanf(fp, " %lu %*u %*u %*c %*d %*u %u %*u %d %*c %*d %*u", &p->p_memory, &effuid, &p->p_nice)) != 3)
{
fclose(fp);
return;
}
p->p_effuid = effuid;
}
else
{
p->p_effuid = 0;
}
for (i = 1; i < CPUTIMENAMES; i++)
{
if (fscanf(fp, " %lu %lu", &cycles_hi, &cycles_lo) == 2)
{
p->p_cpucycles[i] = make64(cycles_lo, cycles_hi);
}
else
{
p->p_cpucycles[i] = 0;
}
}
if ((p->p_flags & IS_TASK))
{
if (fscanf(fp, " %lu", &p->p_memory) != 1)
{
p->p_memory = 0;
}
}
p->p_flags |= USED;
fclose(fp);
}
void getkinfo()
{
FILE *fp;
if ((fp = fopen("/proc/kinfo", "r")) == NULL)
{
fprintf(stderr, "opening " _PATH_PROC "kinfo failed\n");
exit(1);
}
if (fscanf(fp, "%u %u", &nr_procs, &nr_tasks) != 2)
{
fprintf(stderr, "reading from " _PATH_PROC "kinfo failed\n");
exit(1);
}
fclose(fp);
nr_total = (int)(nr_procs + nr_tasks);
}
void print_procs(struct proc *proc1, struct proc *proc2, int cputimemode)
{
int p, nprocs;
u64_t systemticks = 0;
u64_t userticks = 0;
u64_t total_ticks = 0;
int blockedseen = 0;
static struct tp *tick_procs = NULL;
if (tick_procs == NULL)
{
tick_procs = malloc(nr_total * sizeof(tick_procs[0]));
if (tick_procs == NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(1);
}
}
for (p = nprocs = 0; p < nr_total; p++)
{
u64_t uticks;
if (!(proc2[p].p_flags & USED))
{
continue;
}
tick_procs[nprocs].p = proc2 + p;
tick_procs[nprocs].ticks = cputicks(&proc1[p], &proc2[p], cputimemode);
uticks = cputicks(&proc1[p], &proc2[p], 1);
total_ticks = total_ticks + uticks;
if (!(proc2[p].p_flags & IS_TASK))
{
if (proc2[p].p_flags & IS_SYSTEM)
{
systemticks = systemticks + tick_procs[nprocs].ticks;
}
else
{
userticks = userticks + tick_procs[nprocs].ticks;
}
}
nprocs++;
}
if (total_ticks == 0)
{
return;
}
printf("CPU states: %6.2f%% user, ", 100.0 * userticks / total_ticks);
printf("%6.2f%% system", 100.0 * systemticks / total_ticks);
printf("%6.2f%% in total\n", 100.0 * (systemticks + userticks) / total_ticks);
}
u64_t cputicks(struct proc *p1, struct proc *p2, int timemode)
{
int i;
u64_t t = 0;
for (i = 0; i < CPUTIMENAMES; i++)
{
if (!CPUTIME(timemode, i))
{
continue;
}
if (p1->p_endpoint == p2->p_endpoint)
{
{
t = t + p2->p_cpucycles[i] - p1->p_cpucycles[i];
}
}
else
{
t = t + p2->p_cpucycles[i];
}
}
return t;
}