#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "yeeshell.h" /* record cmdline history */ char *history[CMDLINE_HISTORY_MAX_QUANTITY]; int cmdline_amount = 0; struct proc *proc = NULL, *prev_proc = NULL; int nr_total; unsigned int nr_procs, nr_tasks; int main() { char *cmdline = NULL, *pwd = NULL; char *args[ARGS_MAX_QUANTITY]; int status = 1; pwd = (char *)calloc(PATH_MAX_SIZE, sizeof(char)); for (int i = 0; i < CMDLINE_HISTORY_MAX_QUANTITY; i++) { history[i] = (char *)calloc(CMDLINE_MAX_SIZE, sizeof(char)); } /* execute the shell's read, parse and execution loop */ do { if (!getcwd(pwd, PATH_MAX_SIZE)) { printf("yeeshell: The current path cannot be obtained!\n"); exit(0); } printf("[root@yeeshell %s]# ", pwd); cmdline = readline(); strcpy(history[cmdline_amount++], cmdline); status = execute(cmdline, args); free(cmdline); } while (status); for (int i = 0; i < CMDLINE_HISTORY_MAX_QUANTITY; i++) { free(history[i]); } exit(EXIT_SUCCESS); } char *readline() { char *cmdline = NULL; ssize_t bufsize = 0; getline(&cmdline, &bufsize, stdin); return cmdline; } int parseline(char *cmdline, char **args) { static char array[CMDLINE_MAX_SIZE]; /* holds local copy of command line */ char *buf = array; /* ptr that traverses command line */ char *delim; /* points to first space delimiter */ int argc; /* number of args */ int bg; /* background job? */ strcpy(buf, cmdline); buf[strlen(buf) - 1] = ' '; /* replace trailing '\n' with space */ while (*buf && (*buf == ' ')) /* ignore leading spaces */ { buf++; } /* Build the argv list */ argc = 0; if (*buf == '\'') { buf++; delim = strchr(buf, '\''); } else { delim = strchr(buf, ' '); } while (delim) { args[argc++] = buf; *delim = '\0'; buf = delim + 1; while (*buf && (*buf == ' ')) /* ignore spaces */ { buf++; } if (*buf == '\'') { buf++; delim = strchr(buf, '\''); } else { delim = strchr(buf, ' '); } } args[argc] = NULL; if (argc == 0) /* ignore blank line */ { return 1; } /* should the job run in the background? */ if ((bg = (*args[argc - 1] == '&')) != 0) { args[--argc] = NULL; } return bg; } int check_redirect(char **args, char *redirect_filename, char **redirect_args) { int i = 0, j = 0, redirect_flag = REDIRECT_NO; while (args[i] != NULL) { if (!strcmp(args[i], ">")) { redirect_flag = REDIRECT_OUT; break; } else if (!strcmp(args[i], "<")) { redirect_flag = REDIRECT_IN; break; } i++; } if ((redirect_flag == 1) || (redirect_flag == 2)) { strcpy(redirect_filename, args[i + 1]); for (j = 0; j < i; j++) { redirect_args[j] = args[j]; } } return redirect_flag; } int do_redirect(int redirect_flag, char *redirect_filename, char **redirect_args) { pid_t pid; int fd = 1; if ((pid = fork()) == 0) /* Child process */ { if (redirect_flag == 1) /* in or out? */ { fd = open(redirect_filename, O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR | S_IXUSR); close(1); dup(fd); } else if (redirect_flag == 2) { fd = open(redirect_filename, O_RDONLY, S_IRUSR); close(0); dup(fd); } if (execvp(redirect_args[0], redirect_args) <= 0) { printf("%s: Command not found\n", redirect_args[0]); exit(0); } close(fd); } else /* parent process */ { waitpid(pid, NULL, 0); } return 1; } int check_pipe(char **args, char **pipe_arg_1, char **pipe_arg_2) { int pipe_flag = 0, i = 0, j = 0; while (args[i] != NULL) { if (!strcmp(args[i], "|")) { pipe_flag = 1; break; } pipe_arg_1[j++] = args[i++]; } pipe_arg_1[j] = NULL; j = 0; i++; while (args[i] != NULL) { pipe_arg_2[j++] = args[i++]; } pipe_arg_2[j] = NULL; return pipe_flag; } int do_pipe(char **pipe_arg_1, char **pipe_arg_2) { int fds[2]; pipe(fds); pid_t prog_1, prog_2; if ((prog_1 = fork()) == 0) /* Child process 1 */ { close(1); dup(fds[1]); close(fds[0]); close(fds[1]); if (execvp(pipe_arg_1[0], pipe_arg_1) <= 0) { printf("%s: Command not found\n", pipe_arg_1[0]); exit(0); } } if ((prog_2 = fork()) == 0) /* Child process 1 */ { dup2(fds[0], 0); close(fds[0]); close(fds[1]); if (execvp(pipe_arg_2[0], pipe_arg_2) <= 0) { printf("%s: Command not found\n", pipe_arg_2[0]); exit(0); } } close(fds[0]); close(fds[1]); waitpid(prog_1, NULL, 0); waitpid(prog_2, NULL, 0); return 1; } int do_bg_fg(char **args, int bg) { pid_t pid; if ((pid = fork()) == 0) { if (execvp(args[0], args) <= 0) { printf("%s: Command not found\n", args[0]); exit(0); } } else { if (bg) { signal(SIGCHLD, SIG_IGN); } else { waitpid(pid, NULL, 0); } } return 1; } int execute(char *cmdline, char **args) { int bg = 0, i = 0, redirect_flag = 0, pipe_num = 0; pid_t pid; char *redirect_filename = NULL; char *redirect_args[ARGS_MAX_QUANTITY]; char *pipe_arg_1[ARGS_MAX_QUANTITY]; char *pipe_arg_2[ARGS_MAX_QUANTITY]; redirect_filename = (char *)calloc(REDIRECT_FILENAME_MAX_SIZE, sizeof(char)); memset(redirect_args, NULL, sizeof(redirect_args)); bg = parseline(cmdline, args); redirect_flag = check_redirect(args, redirect_filename, redirect_args); pipe_num = check_pipe(args, pipe_arg_1, pipe_arg_2); if (args[0] == NULL) { return 1; } if (pipe_num == 0) /* no pipe */ { if (!built_in(args)) /* built-in cmd? */ { if (redirect_flag != 0) /* redirection? */ { return do_redirect(redirect_flag, redirect_filename, redirect_args); } else { return do_bg_fg(args, bg); } } else { return 1; } } else { return do_pipe(pipe_arg_1, pipe_arg_2); } } int built_in(char **args) { if (!strcmp(args[0], "exit")) { exit(0); } else if (!strcmp(args[0], "cd")) { return builtin_cd(args); } else if (!strcmp(args[0], "history")) { return builtin_history(args); } else if (!strcmp(args[0], "mytop")) { return builtin_mytop(); } else { return 0; } } int builtin_cd(char **args) { if (args[1] == NULL) { return 1; } else { if (chdir(args[1]) != 0) { perror("yeeshell"); } return 1; } } int builtin_history(char **args) { int n = 0; if (args[1] == NULL) { n = cmdline_amount; } else { n = atoi(args[1]) < cmdline_amount ? atoi(args[1]) : cmdline_amount; } printf("ID\tCommandline\n"); for (int i = 0; i < n; i++) { printf("%d\t%s\n", i + 1, history[i]); } return 1; } int builtin_mytop() { int memory_flag = 0, CPU_flag = 0; memory_flag = mytop_memory(); CPU_flag = mytop_CPU(); if (!memory_flag) { return -1; } else if (!CPU_flag) { return -2; } else { return 1; } } int mytop_memory() { FILE *fp = NULL; int pagesize; long total = 0, free = 0, cached = 0; if ((fp = fopen("/proc/meminfo", "r")) == NULL) { return 0; } fscanf(fp, "%u %lu %lu %lu", &pagesize, &total, &free, &cached); fclose(fp); printf("memmory(KBytes):\t%ld total\t%ld free\t%ld cached\n", (pagesize * total) / 1024, (pagesize * free) / 1024, (pagesize * cached) / 1024); return 1; } int mytop_CPU() { int cputimemode = 1; getkinfo(); get_procs(); if (prev_proc == NULL) { get_procs(); } print_procs(prev_proc, proc, cputimemode); return 0; } void get_procs() { struct proc *p; int i; p = prev_proc; prev_proc = proc; proc = p; if (proc == NULL) { proc = malloc(nr_total * sizeof(proc[0])); if (proc == NULL) { fprintf(stderr, "Out of memory!\n"); exit(1); } } for (i = 0; i < nr_total; i++) proc[i].p_flags = 0; parse_dir(); } void parse_dir() { DIR *p_dir; struct dirent *p_ent; pid_t pid; char *end; if ((p_dir = opendir("/proc")) == NULL) { perror("opendir on " _PATH_PROC); exit(1); } for (p_ent = readdir(p_dir); p_ent != NULL; p_ent = readdir(p_dir)) { pid = strtol(p_ent->d_name, &end, 10); if (!end[0] && pid != 0) { parse_file(pid); } } closedir(p_dir); } void parse_file(pid_t pid) { char path[PATH_MAX], name[256], type, state; int version, endpt, effuid; unsigned long cycles_hi, cycles_lo; FILE *fp; struct proc *p; int slot; int i; sprintf(path, "%d/psinfo", pid); if ((fp = fopen(path, "r")) == NULL) return; if (fscanf(fp, "%d", &version) != 1) { fclose(fp); return; } if (version != PSINFO_VERSION) { fputs("procfs version mismatch!\n", stderr); exit(1); } if (fscanf(fp, " %c %d", &type, &endpt) != 2) { fclose(fp); return; } slot = SLOT_NR(endpt); if (slot < 0 || slot >= nr_total) { //fprintf(stderr, "top: unreasonable endpoint number %d\n", endpt); fclose(fp); return; } p = &proc[slot]; if (type == TYPE_TASK) { p->p_flags |= IS_TASK; } else if (type == TYPE_SYSTEM) { p->p_flags |= IS_SYSTEM; } p->p_endpoint = endpt; p->p_pid = pid; if (fscanf(fp, " %255s %c %d %d %lu %*u %lu %lu", name, &state, &p->p_blocked, &p->p_priority, &p->p_user_time, &cycles_hi, &cycles_lo) != 7) { fclose(fp); return; } strncpy(p->p_name, name, sizeof(p->p_name) - 1); p->p_name[sizeof(p->p_name) - 1] = 0; if (state != STATE_RUN) { p->p_flags |= BLOCKED; } p->p_cpucycles[0] = make64(cycles_lo, cycles_hi); p->p_memory = 0L; if (!(p->p_flags & IS_TASK)) { int j; if ((j = fscanf(fp, " %lu %*u %*u %*c %*d %*u %u %*u %d %*c %*d %*u", &p->p_memory, &effuid, &p->p_nice)) != 3) { fclose(fp); return; } p->p_effuid = effuid; } else { p->p_effuid = 0; } for (i = 1; i < CPUTIMENAMES; i++) { if (fscanf(fp, " %lu %lu", &cycles_hi, &cycles_lo) == 2) { p->p_cpucycles[i] = make64(cycles_lo, cycles_hi); } else { p->p_cpucycles[i] = 0; } } if ((p->p_flags & IS_TASK)) { if (fscanf(fp, " %lu", &p->p_memory) != 1) { p->p_memory = 0; } } p->p_flags |= USED; fclose(fp); } void getkinfo() { FILE *fp; if ((fp = fopen("/proc/kinfo", "r")) == NULL) { fprintf(stderr, "opening " _PATH_PROC "kinfo failed\n"); exit(1); } if (fscanf(fp, "%u %u", &nr_procs, &nr_tasks) != 2) { fprintf(stderr, "reading from " _PATH_PROC "kinfo failed\n"); exit(1); } fclose(fp); nr_total = (int)(nr_procs + nr_tasks); } void print_procs(struct proc *proc1, struct proc *proc2, int cputimemode) { int p, nprocs; u64_t systemticks = 0; u64_t userticks = 0; u64_t total_ticks = 0; int blockedseen = 0; static struct tp *tick_procs = NULL; if (tick_procs == NULL) { tick_procs = malloc(nr_total * sizeof(tick_procs[0])); if (tick_procs == NULL) { fprintf(stderr, "Out of memory!\n"); exit(1); } } for (p = nprocs = 0; p < nr_total; p++) { u64_t uticks; if (!(proc2[p].p_flags & USED)) { continue; } tick_procs[nprocs].p = proc2 + p; tick_procs[nprocs].ticks = cputicks(&proc1[p], &proc2[p], cputimemode); uticks = cputicks(&proc1[p], &proc2[p], 1); total_ticks = total_ticks + uticks; if (!(proc2[p].p_flags & IS_TASK)) { if (proc2[p].p_flags & IS_SYSTEM) { systemticks = systemticks + tick_procs[nprocs].ticks; } else { userticks = userticks + tick_procs[nprocs].ticks; } } nprocs++; } if (total_ticks == 0) { return; } printf("CPU states: %6.2f%% user, ", 100.0 * userticks / total_ticks); printf("%6.2f%% system", 100.0 * systemticks / total_ticks); printf("%6.2f%% in total\n", 100.0 * (systemticks + userticks) / total_ticks); } u64_t cputicks(struct proc *p1, struct proc *p2, int timemode) { int i; u64_t t = 0; for (i = 0; i < CPUTIMENAMES; i++) { if (!CPUTIME(timemode, i)) { continue; } if (p1->p_endpoint == p2->p_endpoint) { { t = t + p2->p_cpucycles[i] - p1->p_cpucycles[i]; } } else { t = t + p2->p_cpucycles[i]; } } return t; }