@ -0,0 +1,2 @@ | |||||
from daseCV.classifiers.k_nearest_neighbor import * | |||||
from daseCV.classifiers.linear_classifier import * |
@ -0,0 +1,186 @@ | |||||
from builtins import range | |||||
from builtins import object | |||||
import numpy as np | |||||
from past.builtins import xrange | |||||
class KNearestNeighbor(object): | |||||
""" a kNN classifier with L2 distance """ | |||||
def __init__(self): | |||||
pass | |||||
def train(self, X, y): | |||||
""" | |||||
Train the classifier. For k-nearest neighbors this is just | |||||
memorizing the training data. | |||||
Inputs: | |||||
- X: A numpy array of shape (num_train, D) containing the training data | |||||
consisting of num_train samples each of dimension D. | |||||
- y: A numpy array of shape (N,) containing the training labels, where | |||||
y[i] is the label for X[i]. | |||||
""" | |||||
self.X_train = X | |||||
self.y_train = y | |||||
def predict(self, X, k=1, num_loops=0): | |||||
""" | |||||
Predict labels for test data using this classifier. | |||||
Inputs: | |||||
- X: A numpy array of shape (num_test, D) containing test data consisting | |||||
of num_test samples each of dimension D. | |||||
- k: The number of nearest neighbors that vote for the predicted labels. | |||||
- num_loops: Determines which implementation to use to compute distances | |||||
between training points and testing points. | |||||
Returns: | |||||
- y: A numpy array of shape (num_test,) containing predicted labels for the | |||||
test data, where y[i] is the predicted label for the test point X[i]. | |||||
""" | |||||
if num_loops == 0: | |||||
dists = self.compute_distances_no_loops(X) | |||||
elif num_loops == 1: | |||||
dists = self.compute_distances_one_loop(X) | |||||
elif num_loops == 2: | |||||
dists = self.compute_distances_two_loops(X) | |||||
else: | |||||
raise ValueError('Invalid value %d for num_loops' % num_loops) | |||||
return self.predict_labels(dists, k=k) | |||||
def compute_distances_two_loops(self, X): | |||||
""" | |||||
Compute the distance between each test point in X and each training point | |||||
in self.X_train using a nested loop over both the training data and the | |||||
test data. | |||||
Inputs: | |||||
- X: A numpy array of shape (num_test, D) containing test data. | |||||
Returns: | |||||
- dists: A numpy array of shape (num_test, num_train) where dists[i, j] | |||||
is the Euclidean distance between the ith test point and the jth training | |||||
point. | |||||
""" | |||||
num_test = X.shape[0] | |||||
num_train = self.X_train.shape[0] | |||||
dists = np.zeros((num_test, num_train)) | |||||
for i in range(num_test): | |||||
for j in range(num_train): | |||||
##################################################################### | |||||
# TODO: | |||||
#计算第i个测试点与第j个训练点之间的l2距离,并将结果存储在dists[i,j]中。 | |||||
#你不应使用循环和np.linalg.norm()函数。 | |||||
##################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return dists | |||||
def compute_distances_one_loop(self, X): | |||||
""" | |||||
Compute the distance between each test point in X and each training point | |||||
in self.X_train using a single loop over the test data. | |||||
Input / Output: Same as compute_distances_two_loops | |||||
""" | |||||
num_test = X.shape[0] | |||||
num_train = self.X_train.shape[0] | |||||
dists = np.zeros((num_test, num_train)) | |||||
for i in range(num_test): | |||||
####################################################################### | |||||
# TODO: | |||||
#计算第i个测试点与所有训练点之间的l2距离,并将结果存储在dists[i,:]中。 | |||||
#不要使用np.linalg.norm()。 | |||||
####################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# 注意np.sum中要加上维度axis=1才能得出正确的结果 | |||||
# 关于axis的介绍 | |||||
# https://zhuanlan.zhihu.com/p/30960190 | |||||
# 以及np.sum的介绍 | |||||
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html | |||||
# self.X_train (5000,3072) X[i] (1,3072) (self.X_train - X[i]) (5000,3072) | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return dists | |||||
def compute_distances_no_loops(self, X): | |||||
""" | |||||
Compute the distance between each test point in X and each training point | |||||
in self.X_train using no explicit loops. | |||||
Input / Output: Same as compute_distances_two_loops | |||||
""" | |||||
num_test = X.shape[0] | |||||
num_train = self.X_train.shape[0] | |||||
dists = np.zeros((num_test, num_train)) | |||||
######################################################################### | |||||
# TODO: | |||||
#在不使用任何显式循环的情况下,计算所有测试点和所有训练点之间的l2距离, | |||||
#并将结果存储在dists中。 | |||||
#您应该仅使用基本的数组操作来实现此功能。 | |||||
#不可以使用scipy中的函数以及函数np.linalg.norm()。 | |||||
# | |||||
#提示:尝试使用矩阵乘法和广播总和来计算l2距离。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# (x-y)^2 = x^2 + y^2 - 2xy | |||||
# reshape是为了让两个矩阵有个维度为1,这样子便可进行广播 | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return dists | |||||
def predict_labels(self, dists, k=1): | |||||
""" | |||||
Given a matrix of distances between test points and training points, | |||||
predict a label for each test point. | |||||
Inputs: | |||||
- dists: A numpy array of shape (num_test, num_train) where dists[i, j] | |||||
gives the distance betwen the ith test point and the jth training point. | |||||
Returns: | |||||
- y: A numpy array of shape (num_test,) containing predicted labels for the | |||||
test data, where y[i] is the predicted label for the test point X[i]. | |||||
""" | |||||
num_test = dists.shape[0] | |||||
y_pred = np.zeros(num_test) | |||||
for i in range(num_test): | |||||
# A list of length k storing the labels of the k nearest neighbors to | |||||
# the ith test point. | |||||
closest_y = [] | |||||
######################################################################### | |||||
# TODO: | |||||
#使用距离矩阵查找第i个测试点的k个最近邻居, | |||||
#并使用self.y_train查找这些邻居的标签。 | |||||
#将这些标签存储在closest_y中。 | |||||
# | |||||
#提示:查阅函数numpy.argsort。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# numpy.argsort 返回排序好的数列的索引 | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
######################################################################### | |||||
# TODO: | |||||
# | |||||
#现在,你已经找到了k个最近邻的标签,接着需要在closest_y中找到最可能的标签。 #将此标签存储在y_pred [i]中。如果有两个标签可能性一样的话选择索引更小的那个。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
y_pred[i] = np.bincount(closest_y).argmax() | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return y_pred |
@ -0,0 +1,136 @@ | |||||
from __future__ import print_function | |||||
from builtins import range | |||||
from builtins import object | |||||
import numpy as np | |||||
from daseCV.classifiers.linear_svm import * | |||||
from daseCV.classifiers.softmax import * | |||||
from past.builtins import xrange | |||||
class LinearClassifier(object): | |||||
def __init__(self): | |||||
self.W = None | |||||
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100, | |||||
batch_size=200, verbose=False): | |||||
""" | |||||
Train this linear classifier using stochastic gradient descent. | |||||
Inputs: | |||||
- X: A numpy array of shape (N, D) containing training data; there are N | |||||
training samples each of dimension D. | |||||
- y: A numpy array of shape (N,) containing training labels; y[i] = c | |||||
means that X[i] has label 0 <= c < C for C classes. | |||||
- learning_rate: (float) learning rate for optimization. | |||||
- reg: (float) regularization strength. | |||||
- num_iters: (integer) number of steps to take when optimizing | |||||
- batch_size: (integer) number of training examples to use at each step. | |||||
- verbose: (boolean) If true, print progress during optimization. | |||||
Outputs: | |||||
A list containing the value of the loss function at each training iteration. | |||||
""" | |||||
num_train, dim = X.shape | |||||
num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes | |||||
if self.W is None: | |||||
# lazily initialize W | |||||
self.W = 0.001 * np.random.randn(dim, num_classes) | |||||
# Run stochastic gradient descent to optimize W | |||||
loss_history = [] | |||||
for it in range(num_iters): | |||||
X_batch = None | |||||
y_batch = None | |||||
######################################################################### | |||||
# TODO: | |||||
# 从训练数据及其相应的标签中采样batch_size大小的样本,以用于本轮梯度下降。 | |||||
# 将数据存储在X_batch中,并将其相应的标签存储在y_batch中: | |||||
# 采样后,X_batch的形状为(batch_size,dim),y_batch的形状(batch_size,) | |||||
# | |||||
# 提示:使用np.random.choice生成索引。 可重复的采样比不可重复的采样要快一点。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# evaluate loss and gradient | |||||
loss, grad = self.loss(X_batch, y_batch, reg) | |||||
loss_history.append(loss) | |||||
# perform parameter update | |||||
######################################################################### | |||||
# TODO: | |||||
# 使用梯度和学习率更新权重。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
if verbose and it % 100 == 0: | |||||
print('iteration %d / %d: loss %f' % (it, num_iters, loss)) | |||||
return loss_history | |||||
def predict(self, X): | |||||
""" | |||||
Use the trained weights of this linear classifier to predict labels for | |||||
data points. | |||||
Inputs: | |||||
- X: A numpy array of shape (N, D) containing training data; there are N | |||||
training samples each of dimension D. | |||||
Returns: | |||||
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional | |||||
array of length N, and each element is an integer giving the predicted | |||||
class. | |||||
""" | |||||
y_pred = np.zeros(X.shape[0]) | |||||
########################################################################### | |||||
# TODO: | |||||
# 实现此方法。将预测的标签存储在y_pred中。 | |||||
########################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return y_pred | |||||
def loss(self, X_batch, y_batch, reg): | |||||
""" | |||||
Compute the loss function and its derivative. | |||||
Subclasses will override this. | |||||
Inputs: | |||||
- X_batch: A numpy array of shape (N, D) containing a minibatch of N | |||||
data points; each point has dimension D. | |||||
- y_batch: A numpy array of shape (N,) containing labels for the minibatch. | |||||
- reg: (float) regularization strength. | |||||
Returns: A tuple containing: | |||||
- loss as a single float | |||||
- gradient with respect to self.W; an array of the same shape as W | |||||
""" | |||||
pass | |||||
class LinearSVM(LinearClassifier): | |||||
""" A subclass that uses the Multiclass SVM loss function """ | |||||
def loss(self, X_batch, y_batch, reg): | |||||
return svm_loss_vectorized(self.W, X_batch, y_batch, reg) | |||||
class Softmax(LinearClassifier): | |||||
""" A subclass that uses the Softmax + Cross-entropy loss function """ | |||||
def loss(self, X_batch, y_batch, reg): | |||||
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg) |
@ -0,0 +1,97 @@ | |||||
from builtins import range | |||||
import numpy as np | |||||
from random import shuffle | |||||
from past.builtins import xrange | |||||
def svm_loss_naive(W, X, y, reg): | |||||
""" | |||||
Structured SVM loss function, naive implementation (with loops). | |||||
Inputs have dimension D, there are C classes, and we operate on minibatches | |||||
of N examples. | |||||
Inputs: | |||||
- W: A numpy array of shape (D, C) containing weights. | |||||
- X: A numpy array of shape (N, D) containing a minibatch of data. | |||||
- y: A numpy array of shape (N,) containing training labels; y[i] = c means | |||||
that X[i] has label c, where 0 <= c < C. | |||||
- reg: (float) regularization strength | |||||
Returns a tuple of: | |||||
- loss as single float | |||||
- gradient with respect to weights W; an array of same shape as W | |||||
""" | |||||
dW = np.zeros(W.shape) # initialize the gradient as zero | |||||
# compute the loss and the gradient | |||||
num_classes = W.shape[1] | |||||
num_train = X.shape[0] | |||||
loss = 0.0 | |||||
for i in range(num_train): | |||||
scores = X[i].dot(W) | |||||
correct_class_score = scores[y[i]] | |||||
for j in range(num_classes): | |||||
if j == y[i]: | |||||
continue | |||||
margin = scores[j] - correct_class_score + 1 # note delta = 1 | |||||
if margin > 0: | |||||
loss += margin | |||||
dW[:,j] += X[i] # dW计算 | |||||
dW[:,y[i]] += -X[i] # dW计算 | |||||
# Right now the loss is a sum over all training examples, but we want it | |||||
# to be an average instead so we divide by num_train. | |||||
loss /= num_train | |||||
# Add regularization to the loss. | |||||
loss += reg * np.sum(W * W) | |||||
############################################################################# | |||||
# TODO: | |||||
# 计算损失函数的梯度并将其存储为dW。 | |||||
# 与其先计算损失再计算梯度,还不如在计算损失的同时计算梯度更简单。 | |||||
# 因此,您可能需要修改上面的一些代码来计算梯度。 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return loss, dW | |||||
def svm_loss_vectorized(W, X, y, reg): | |||||
""" | |||||
Structured SVM loss function, vectorized implementation. | |||||
Inputs and outputs are the same as svm_loss_naive. | |||||
""" | |||||
loss = 0.0 | |||||
dW = np.zeros(W.shape) # initialize the gradient as zero | |||||
############################################################################# | |||||
# TODO: | |||||
# 实现一个向量化SVM损失计算方法,并将结果存储到loss中 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
############################################################################# | |||||
# TODO: | |||||
# 实现一个向量化的梯度计算方法,并将结果存储到dW中 | |||||
# | |||||
# 提示:与其从头计算梯度,不如利用一些计算loss时的中间变量 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return loss, dW |
@ -0,0 +1,220 @@ | |||||
from __future__ import print_function | |||||
from builtins import range | |||||
from builtins import object | |||||
import numpy as np | |||||
import matplotlib.pyplot as plt | |||||
from past.builtins import xrange | |||||
class TwoLayerNet(object): | |||||
""" | |||||
A two-layer fully-connected neural network. The net has an input dimension of | |||||
N, a hidden layer dimension of H, and performs classification over C classes. | |||||
We train the network with a softmax loss function and L2 regularization on the | |||||
weight matrices. The network uses a ReLU nonlinearity after the first fully | |||||
connected layer. | |||||
In other words, the network has the following architecture: | |||||
input - fully connected layer - ReLU - fully connected layer - softmax | |||||
The outputs of the second fully-connected layer are the scores for each class. | |||||
""" | |||||
def __init__(self, input_size, hidden_size, output_size, std=1e-4): | |||||
""" | |||||
Initialize the model. Weights are initialized to small random values and | |||||
biases are initialized to zero. Weights and biases are stored in the | |||||
variable self.params, which is a dictionary with the following keys: | |||||
W1: First layer weights; has shape (D, H) | |||||
b1: First layer biases; has shape (H,) | |||||
W2: Second layer weights; has shape (H, C) | |||||
b2: Second layer biases; has shape (C,) | |||||
Inputs: | |||||
- input_size: The dimension D of the input data. | |||||
- hidden_size: The number of neurons H in the hidden layer. | |||||
- output_size: The number of classes C. | |||||
""" | |||||
self.params = {} | |||||
self.params['W1'] = std * np.random.randn(input_size, hidden_size) | |||||
self.params['b1'] = np.zeros(hidden_size) | |||||
self.params['W2'] = std * np.random.randn(hidden_size, output_size) | |||||
self.params['b2'] = np.zeros(output_size) | |||||
def loss(self, X, y=None, reg=0.0): | |||||
""" | |||||
Compute the loss and gradients for a two layer fully connected neural | |||||
network. | |||||
Inputs: | |||||
- X: Input data of shape (N, D). Each X[i] is a training sample. | |||||
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is | |||||
an integer in the range 0 <= y[i] < C. This parameter is optional; if it | |||||
is not passed then we only return scores, and if it is passed then we | |||||
instead return the loss and gradients. | |||||
- reg: Regularization strength. | |||||
Returns: | |||||
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is | |||||
the score for class c on input X[i]. | |||||
If y is not None, instead return a tuple of: | |||||
- loss: Loss (data loss and regularization loss) for this batch of training | |||||
samples. | |||||
- grads: Dictionary mapping parameter names to gradients of those parameters | |||||
with respect to the loss function; has the same keys as self.params. | |||||
""" | |||||
# Unpack variables from the params dictionary | |||||
W1, b1 = self.params['W1'], self.params['b1'] | |||||
W2, b2 = self.params['W2'], self.params['b2'] | |||||
N, D = X.shape | |||||
# Compute the forward pass | |||||
scores = None | |||||
############################################################################# | |||||
# TODO: 执行向前传播,计算输入数据的每个类的score。 | |||||
# 将结果存储在scores变量中,该变量应该是一个(N, C)维的数组。 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# If the targets are not given then jump out, we're done | |||||
if y is None: | |||||
return scores | |||||
# Compute the loss | |||||
loss = None | |||||
############################################################################# | |||||
# TODO: 完成向前传播,计算损失。 | |||||
# 这应该包括数据损失和W1和W2的L2正则化项。 | |||||
# 将结果存储在变量loss中,它应该是一个标量。 | |||||
# 使用Softmax损失函数。 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# Backward pass: compute gradients | |||||
grads = {} | |||||
############################################################################# | |||||
# TODO: 计算反向传播,计算权重和偏置值的梯度, 将结果存储在grads字典中。 | |||||
# 例如,grads['W1']存储W1的梯度,并且和W1是相同大小的矩阵。 | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return loss, grads | |||||
def train(self, X, y, X_val, y_val, | |||||
learning_rate=1e-3, learning_rate_decay=0.95, | |||||
reg=5e-6, num_iters=100, | |||||
batch_size=200, verbose=False): | |||||
""" | |||||
Train this neural network using stochastic gradient descent. | |||||
Inputs: | |||||
- X: A numpy array of shape (N, D) giving training data. | |||||
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that | |||||
X[i] has label c, where 0 <= c < C. | |||||
- X_val: A numpy array of shape (N_val, D) giving validation data. | |||||
- y_val: A numpy array of shape (N_val,) giving validation labels. | |||||
- learning_rate: Scalar giving learning rate for optimization. | |||||
- learning_rate_decay: Scalar giving factor used to decay the learning rate | |||||
after each epoch. | |||||
- reg: Scalar giving regularization strength. | |||||
- num_iters: Number of steps to take when optimizing. | |||||
- batch_size: Number of training examples to use per step. | |||||
- verbose: boolean; if true print progress during optimization. | |||||
""" | |||||
num_train = X.shape[0] | |||||
iterations_per_epoch = max(num_train / batch_size, 1) | |||||
# Use SGD to optimize the parameters in self.model | |||||
loss_history = [] | |||||
train_acc_history = [] | |||||
val_acc_history = [] | |||||
for it in range(num_iters): | |||||
X_batch = None | |||||
y_batch = None | |||||
######################################################################### | |||||
# TODO: 创建一个随机的数据和标签的mini-batch,存储在X_batch和y_batch中。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
# Compute loss and gradients using the current minibatch | |||||
loss, grads = self.loss(X_batch, y=y_batch, reg=reg) | |||||
loss_history.append(loss) | |||||
######################################################################### | |||||
# TODO: 使用grads字典中的梯度来更新网络参数(参数存储在字典self.params中) | |||||
# 使用随机梯度下降法。 | |||||
######################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
if verbose and it % 100 == 0: | |||||
print('iteration %d / %d: loss %f' % (it, num_iters, loss)) | |||||
# Every epoch, check train and val accuracy and decay learning rate. | |||||
if it % iterations_per_epoch == 0: | |||||
# Check accuracy | |||||
train_acc = (self.predict(X_batch) == y_batch).mean() | |||||
val_acc = (self.predict(X_val) == y_val).mean() | |||||
train_acc_history.append(train_acc) | |||||
val_acc_history.append(val_acc) | |||||
# Decay learning rate | |||||
learning_rate *= learning_rate_decay | |||||
return { | |||||
'loss_history': loss_history, | |||||
'train_acc_history': train_acc_history, | |||||
'val_acc_history': val_acc_history, | |||||
} | |||||
def predict(self, X): | |||||
""" | |||||
Use the trained weights of this two-layer network to predict labels for | |||||
data points. For each data point we predict scores for each of the C | |||||
classes, and assign each data point to the class with the highest score. | |||||
Inputs: | |||||
- X: A numpy array of shape (N, D) giving N D-dimensional data points to | |||||
classify. | |||||
Returns: | |||||
- y_pred: A numpy array of shape (N,) giving predicted labels for each of | |||||
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted | |||||
to have class c, where 0 <= c < C. | |||||
""" | |||||
y_pred = None | |||||
########################################################################### | |||||
# TODO: Implement this function; it should be VERY simple! # | |||||
########################################################################### | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return y_pred |
@ -0,0 +1,65 @@ | |||||
from builtins import range | |||||
import numpy as np | |||||
from random import shuffle | |||||
from past.builtins import xrange | |||||
def softmax_loss_naive(W, X, y, reg): | |||||
""" | |||||
Softmax loss function, naive implementation (with loops) | |||||
Inputs have dimension D, there are C classes, and we operate on minibatches | |||||
of N examples. | |||||
Inputs: | |||||
- W: A numpy array of shape (D, C) containing weights. | |||||
- X: A numpy array of shape (N, D) containing a minibatch of data. | |||||
- y: A numpy array of shape (N,) containing training labels; y[i] = c means | |||||
that X[i] has label c, where 0 <= c < C. | |||||
- reg: (float) regularization strength | |||||
Returns a tuple of: | |||||
- loss as single float | |||||
- gradient with respect to weights W; an array of same shape as W | |||||
""" | |||||
# Initialize the loss and gradient to zero. | |||||
loss = 0.0 | |||||
dW = np.zeros_like(W) | |||||
############################################################################# | |||||
# TODO: 使用显式循环计算softmax损失及其梯度。 | |||||
# 将损失和梯度分别保存在loss和dW中。 | |||||
# 如果你不小心,很容易遇到数值不稳定的情况。 | |||||
# 不要忘了正则化! | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return loss, dW | |||||
def softmax_loss_vectorized(W, X, y, reg): | |||||
""" | |||||
Softmax loss function, vectorized version. | |||||
Inputs and outputs are the same as softmax_loss_naive. | |||||
""" | |||||
# Initialize the loss and gradient to zero. | |||||
loss = 0.0 | |||||
dW = np.zeros_like(W) | |||||
############################################################################# | |||||
# TODO: 不使用显式循环计算softmax损失及其梯度。 | |||||
# 将损失和梯度分别保存在loss和dW中。 | |||||
# 如果你不小心,很容易遇到数值不稳定的情况。 | |||||
# 不要忘了正则化! | |||||
############################################################################# | |||||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
pass | |||||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||||
return loss, dW |