@ -0,0 +1,2 @@ | |||
from daseCV.classifiers.k_nearest_neighbor import * | |||
from daseCV.classifiers.linear_classifier import * |
@ -0,0 +1,186 @@ | |||
from builtins import range | |||
from builtins import object | |||
import numpy as np | |||
from past.builtins import xrange | |||
class KNearestNeighbor(object): | |||
""" a kNN classifier with L2 distance """ | |||
def __init__(self): | |||
pass | |||
def train(self, X, y): | |||
""" | |||
Train the classifier. For k-nearest neighbors this is just | |||
memorizing the training data. | |||
Inputs: | |||
- X: A numpy array of shape (num_train, D) containing the training data | |||
consisting of num_train samples each of dimension D. | |||
- y: A numpy array of shape (N,) containing the training labels, where | |||
y[i] is the label for X[i]. | |||
""" | |||
self.X_train = X | |||
self.y_train = y | |||
def predict(self, X, k=1, num_loops=0): | |||
""" | |||
Predict labels for test data using this classifier. | |||
Inputs: | |||
- X: A numpy array of shape (num_test, D) containing test data consisting | |||
of num_test samples each of dimension D. | |||
- k: The number of nearest neighbors that vote for the predicted labels. | |||
- num_loops: Determines which implementation to use to compute distances | |||
between training points and testing points. | |||
Returns: | |||
- y: A numpy array of shape (num_test,) containing predicted labels for the | |||
test data, where y[i] is the predicted label for the test point X[i]. | |||
""" | |||
if num_loops == 0: | |||
dists = self.compute_distances_no_loops(X) | |||
elif num_loops == 1: | |||
dists = self.compute_distances_one_loop(X) | |||
elif num_loops == 2: | |||
dists = self.compute_distances_two_loops(X) | |||
else: | |||
raise ValueError('Invalid value %d for num_loops' % num_loops) | |||
return self.predict_labels(dists, k=k) | |||
def compute_distances_two_loops(self, X): | |||
""" | |||
Compute the distance between each test point in X and each training point | |||
in self.X_train using a nested loop over both the training data and the | |||
test data. | |||
Inputs: | |||
- X: A numpy array of shape (num_test, D) containing test data. | |||
Returns: | |||
- dists: A numpy array of shape (num_test, num_train) where dists[i, j] | |||
is the Euclidean distance between the ith test point and the jth training | |||
point. | |||
""" | |||
num_test = X.shape[0] | |||
num_train = self.X_train.shape[0] | |||
dists = np.zeros((num_test, num_train)) | |||
for i in range(num_test): | |||
for j in range(num_train): | |||
##################################################################### | |||
# TODO: | |||
#计算第i个测试点与第j个训练点之间的l2距离,并将结果存储在dists[i,j]中。 | |||
#你不应使用循环和np.linalg.norm()函数。 | |||
##################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return dists | |||
def compute_distances_one_loop(self, X): | |||
""" | |||
Compute the distance between each test point in X and each training point | |||
in self.X_train using a single loop over the test data. | |||
Input / Output: Same as compute_distances_two_loops | |||
""" | |||
num_test = X.shape[0] | |||
num_train = self.X_train.shape[0] | |||
dists = np.zeros((num_test, num_train)) | |||
for i in range(num_test): | |||
####################################################################### | |||
# TODO: | |||
#计算第i个测试点与所有训练点之间的l2距离,并将结果存储在dists[i,:]中。 | |||
#不要使用np.linalg.norm()。 | |||
####################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# 注意np.sum中要加上维度axis=1才能得出正确的结果 | |||
# 关于axis的介绍 | |||
# https://zhuanlan.zhihu.com/p/30960190 | |||
# 以及np.sum的介绍 | |||
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html | |||
# self.X_train (5000,3072) X[i] (1,3072) (self.X_train - X[i]) (5000,3072) | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return dists | |||
def compute_distances_no_loops(self, X): | |||
""" | |||
Compute the distance between each test point in X and each training point | |||
in self.X_train using no explicit loops. | |||
Input / Output: Same as compute_distances_two_loops | |||
""" | |||
num_test = X.shape[0] | |||
num_train = self.X_train.shape[0] | |||
dists = np.zeros((num_test, num_train)) | |||
######################################################################### | |||
# TODO: | |||
#在不使用任何显式循环的情况下,计算所有测试点和所有训练点之间的l2距离, | |||
#并将结果存储在dists中。 | |||
#您应该仅使用基本的数组操作来实现此功能。 | |||
#不可以使用scipy中的函数以及函数np.linalg.norm()。 | |||
# | |||
#提示:尝试使用矩阵乘法和广播总和来计算l2距离。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# (x-y)^2 = x^2 + y^2 - 2xy | |||
# reshape是为了让两个矩阵有个维度为1,这样子便可进行广播 | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return dists | |||
def predict_labels(self, dists, k=1): | |||
""" | |||
Given a matrix of distances between test points and training points, | |||
predict a label for each test point. | |||
Inputs: | |||
- dists: A numpy array of shape (num_test, num_train) where dists[i, j] | |||
gives the distance betwen the ith test point and the jth training point. | |||
Returns: | |||
- y: A numpy array of shape (num_test,) containing predicted labels for the | |||
test data, where y[i] is the predicted label for the test point X[i]. | |||
""" | |||
num_test = dists.shape[0] | |||
y_pred = np.zeros(num_test) | |||
for i in range(num_test): | |||
# A list of length k storing the labels of the k nearest neighbors to | |||
# the ith test point. | |||
closest_y = [] | |||
######################################################################### | |||
# TODO: | |||
#使用距离矩阵查找第i个测试点的k个最近邻居, | |||
#并使用self.y_train查找这些邻居的标签。 | |||
#将这些标签存储在closest_y中。 | |||
# | |||
#提示:查阅函数numpy.argsort。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# numpy.argsort 返回排序好的数列的索引 | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
######################################################################### | |||
# TODO: | |||
# | |||
#现在,你已经找到了k个最近邻的标签,接着需要在closest_y中找到最可能的标签。 #将此标签存储在y_pred [i]中。如果有两个标签可能性一样的话选择索引更小的那个。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
y_pred[i] = np.bincount(closest_y).argmax() | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return y_pred |
@ -0,0 +1,136 @@ | |||
from __future__ import print_function | |||
from builtins import range | |||
from builtins import object | |||
import numpy as np | |||
from daseCV.classifiers.linear_svm import * | |||
from daseCV.classifiers.softmax import * | |||
from past.builtins import xrange | |||
class LinearClassifier(object): | |||
def __init__(self): | |||
self.W = None | |||
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100, | |||
batch_size=200, verbose=False): | |||
""" | |||
Train this linear classifier using stochastic gradient descent. | |||
Inputs: | |||
- X: A numpy array of shape (N, D) containing training data; there are N | |||
training samples each of dimension D. | |||
- y: A numpy array of shape (N,) containing training labels; y[i] = c | |||
means that X[i] has label 0 <= c < C for C classes. | |||
- learning_rate: (float) learning rate for optimization. | |||
- reg: (float) regularization strength. | |||
- num_iters: (integer) number of steps to take when optimizing | |||
- batch_size: (integer) number of training examples to use at each step. | |||
- verbose: (boolean) If true, print progress during optimization. | |||
Outputs: | |||
A list containing the value of the loss function at each training iteration. | |||
""" | |||
num_train, dim = X.shape | |||
num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes | |||
if self.W is None: | |||
# lazily initialize W | |||
self.W = 0.001 * np.random.randn(dim, num_classes) | |||
# Run stochastic gradient descent to optimize W | |||
loss_history = [] | |||
for it in range(num_iters): | |||
X_batch = None | |||
y_batch = None | |||
######################################################################### | |||
# TODO: | |||
# 从训练数据及其相应的标签中采样batch_size大小的样本,以用于本轮梯度下降。 | |||
# 将数据存储在X_batch中,并将其相应的标签存储在y_batch中: | |||
# 采样后,X_batch的形状为(batch_size,dim),y_batch的形状(batch_size,) | |||
# | |||
# 提示:使用np.random.choice生成索引。 可重复的采样比不可重复的采样要快一点。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# evaluate loss and gradient | |||
loss, grad = self.loss(X_batch, y_batch, reg) | |||
loss_history.append(loss) | |||
# perform parameter update | |||
######################################################################### | |||
# TODO: | |||
# 使用梯度和学习率更新权重。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
if verbose and it % 100 == 0: | |||
print('iteration %d / %d: loss %f' % (it, num_iters, loss)) | |||
return loss_history | |||
def predict(self, X): | |||
""" | |||
Use the trained weights of this linear classifier to predict labels for | |||
data points. | |||
Inputs: | |||
- X: A numpy array of shape (N, D) containing training data; there are N | |||
training samples each of dimension D. | |||
Returns: | |||
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional | |||
array of length N, and each element is an integer giving the predicted | |||
class. | |||
""" | |||
y_pred = np.zeros(X.shape[0]) | |||
########################################################################### | |||
# TODO: | |||
# 实现此方法。将预测的标签存储在y_pred中。 | |||
########################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return y_pred | |||
def loss(self, X_batch, y_batch, reg): | |||
""" | |||
Compute the loss function and its derivative. | |||
Subclasses will override this. | |||
Inputs: | |||
- X_batch: A numpy array of shape (N, D) containing a minibatch of N | |||
data points; each point has dimension D. | |||
- y_batch: A numpy array of shape (N,) containing labels for the minibatch. | |||
- reg: (float) regularization strength. | |||
Returns: A tuple containing: | |||
- loss as a single float | |||
- gradient with respect to self.W; an array of the same shape as W | |||
""" | |||
pass | |||
class LinearSVM(LinearClassifier): | |||
""" A subclass that uses the Multiclass SVM loss function """ | |||
def loss(self, X_batch, y_batch, reg): | |||
return svm_loss_vectorized(self.W, X_batch, y_batch, reg) | |||
class Softmax(LinearClassifier): | |||
""" A subclass that uses the Softmax + Cross-entropy loss function """ | |||
def loss(self, X_batch, y_batch, reg): | |||
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg) |
@ -0,0 +1,97 @@ | |||
from builtins import range | |||
import numpy as np | |||
from random import shuffle | |||
from past.builtins import xrange | |||
def svm_loss_naive(W, X, y, reg): | |||
""" | |||
Structured SVM loss function, naive implementation (with loops). | |||
Inputs have dimension D, there are C classes, and we operate on minibatches | |||
of N examples. | |||
Inputs: | |||
- W: A numpy array of shape (D, C) containing weights. | |||
- X: A numpy array of shape (N, D) containing a minibatch of data. | |||
- y: A numpy array of shape (N,) containing training labels; y[i] = c means | |||
that X[i] has label c, where 0 <= c < C. | |||
- reg: (float) regularization strength | |||
Returns a tuple of: | |||
- loss as single float | |||
- gradient with respect to weights W; an array of same shape as W | |||
""" | |||
dW = np.zeros(W.shape) # initialize the gradient as zero | |||
# compute the loss and the gradient | |||
num_classes = W.shape[1] | |||
num_train = X.shape[0] | |||
loss = 0.0 | |||
for i in range(num_train): | |||
scores = X[i].dot(W) | |||
correct_class_score = scores[y[i]] | |||
for j in range(num_classes): | |||
if j == y[i]: | |||
continue | |||
margin = scores[j] - correct_class_score + 1 # note delta = 1 | |||
if margin > 0: | |||
loss += margin | |||
dW[:,j] += X[i] # dW计算 | |||
dW[:,y[i]] += -X[i] # dW计算 | |||
# Right now the loss is a sum over all training examples, but we want it | |||
# to be an average instead so we divide by num_train. | |||
loss /= num_train | |||
# Add regularization to the loss. | |||
loss += reg * np.sum(W * W) | |||
############################################################################# | |||
# TODO: | |||
# 计算损失函数的梯度并将其存储为dW。 | |||
# 与其先计算损失再计算梯度,还不如在计算损失的同时计算梯度更简单。 | |||
# 因此,您可能需要修改上面的一些代码来计算梯度。 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return loss, dW | |||
def svm_loss_vectorized(W, X, y, reg): | |||
""" | |||
Structured SVM loss function, vectorized implementation. | |||
Inputs and outputs are the same as svm_loss_naive. | |||
""" | |||
loss = 0.0 | |||
dW = np.zeros(W.shape) # initialize the gradient as zero | |||
############################################################################# | |||
# TODO: | |||
# 实现一个向量化SVM损失计算方法,并将结果存储到loss中 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
############################################################################# | |||
# TODO: | |||
# 实现一个向量化的梯度计算方法,并将结果存储到dW中 | |||
# | |||
# 提示:与其从头计算梯度,不如利用一些计算loss时的中间变量 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return loss, dW |
@ -0,0 +1,220 @@ | |||
from __future__ import print_function | |||
from builtins import range | |||
from builtins import object | |||
import numpy as np | |||
import matplotlib.pyplot as plt | |||
from past.builtins import xrange | |||
class TwoLayerNet(object): | |||
""" | |||
A two-layer fully-connected neural network. The net has an input dimension of | |||
N, a hidden layer dimension of H, and performs classification over C classes. | |||
We train the network with a softmax loss function and L2 regularization on the | |||
weight matrices. The network uses a ReLU nonlinearity after the first fully | |||
connected layer. | |||
In other words, the network has the following architecture: | |||
input - fully connected layer - ReLU - fully connected layer - softmax | |||
The outputs of the second fully-connected layer are the scores for each class. | |||
""" | |||
def __init__(self, input_size, hidden_size, output_size, std=1e-4): | |||
""" | |||
Initialize the model. Weights are initialized to small random values and | |||
biases are initialized to zero. Weights and biases are stored in the | |||
variable self.params, which is a dictionary with the following keys: | |||
W1: First layer weights; has shape (D, H) | |||
b1: First layer biases; has shape (H,) | |||
W2: Second layer weights; has shape (H, C) | |||
b2: Second layer biases; has shape (C,) | |||
Inputs: | |||
- input_size: The dimension D of the input data. | |||
- hidden_size: The number of neurons H in the hidden layer. | |||
- output_size: The number of classes C. | |||
""" | |||
self.params = {} | |||
self.params['W1'] = std * np.random.randn(input_size, hidden_size) | |||
self.params['b1'] = np.zeros(hidden_size) | |||
self.params['W2'] = std * np.random.randn(hidden_size, output_size) | |||
self.params['b2'] = np.zeros(output_size) | |||
def loss(self, X, y=None, reg=0.0): | |||
""" | |||
Compute the loss and gradients for a two layer fully connected neural | |||
network. | |||
Inputs: | |||
- X: Input data of shape (N, D). Each X[i] is a training sample. | |||
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is | |||
an integer in the range 0 <= y[i] < C. This parameter is optional; if it | |||
is not passed then we only return scores, and if it is passed then we | |||
instead return the loss and gradients. | |||
- reg: Regularization strength. | |||
Returns: | |||
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is | |||
the score for class c on input X[i]. | |||
If y is not None, instead return a tuple of: | |||
- loss: Loss (data loss and regularization loss) for this batch of training | |||
samples. | |||
- grads: Dictionary mapping parameter names to gradients of those parameters | |||
with respect to the loss function; has the same keys as self.params. | |||
""" | |||
# Unpack variables from the params dictionary | |||
W1, b1 = self.params['W1'], self.params['b1'] | |||
W2, b2 = self.params['W2'], self.params['b2'] | |||
N, D = X.shape | |||
# Compute the forward pass | |||
scores = None | |||
############################################################################# | |||
# TODO: 执行向前传播,计算输入数据的每个类的score。 | |||
# 将结果存储在scores变量中,该变量应该是一个(N, C)维的数组。 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# If the targets are not given then jump out, we're done | |||
if y is None: | |||
return scores | |||
# Compute the loss | |||
loss = None | |||
############################################################################# | |||
# TODO: 完成向前传播,计算损失。 | |||
# 这应该包括数据损失和W1和W2的L2正则化项。 | |||
# 将结果存储在变量loss中,它应该是一个标量。 | |||
# 使用Softmax损失函数。 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# Backward pass: compute gradients | |||
grads = {} | |||
############################################################################# | |||
# TODO: 计算反向传播,计算权重和偏置值的梯度, 将结果存储在grads字典中。 | |||
# 例如,grads['W1']存储W1的梯度,并且和W1是相同大小的矩阵。 | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return loss, grads | |||
def train(self, X, y, X_val, y_val, | |||
learning_rate=1e-3, learning_rate_decay=0.95, | |||
reg=5e-6, num_iters=100, | |||
batch_size=200, verbose=False): | |||
""" | |||
Train this neural network using stochastic gradient descent. | |||
Inputs: | |||
- X: A numpy array of shape (N, D) giving training data. | |||
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that | |||
X[i] has label c, where 0 <= c < C. | |||
- X_val: A numpy array of shape (N_val, D) giving validation data. | |||
- y_val: A numpy array of shape (N_val,) giving validation labels. | |||
- learning_rate: Scalar giving learning rate for optimization. | |||
- learning_rate_decay: Scalar giving factor used to decay the learning rate | |||
after each epoch. | |||
- reg: Scalar giving regularization strength. | |||
- num_iters: Number of steps to take when optimizing. | |||
- batch_size: Number of training examples to use per step. | |||
- verbose: boolean; if true print progress during optimization. | |||
""" | |||
num_train = X.shape[0] | |||
iterations_per_epoch = max(num_train / batch_size, 1) | |||
# Use SGD to optimize the parameters in self.model | |||
loss_history = [] | |||
train_acc_history = [] | |||
val_acc_history = [] | |||
for it in range(num_iters): | |||
X_batch = None | |||
y_batch = None | |||
######################################################################### | |||
# TODO: 创建一个随机的数据和标签的mini-batch,存储在X_batch和y_batch中。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
# Compute loss and gradients using the current minibatch | |||
loss, grads = self.loss(X_batch, y=y_batch, reg=reg) | |||
loss_history.append(loss) | |||
######################################################################### | |||
# TODO: 使用grads字典中的梯度来更新网络参数(参数存储在字典self.params中) | |||
# 使用随机梯度下降法。 | |||
######################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
if verbose and it % 100 == 0: | |||
print('iteration %d / %d: loss %f' % (it, num_iters, loss)) | |||
# Every epoch, check train and val accuracy and decay learning rate. | |||
if it % iterations_per_epoch == 0: | |||
# Check accuracy | |||
train_acc = (self.predict(X_batch) == y_batch).mean() | |||
val_acc = (self.predict(X_val) == y_val).mean() | |||
train_acc_history.append(train_acc) | |||
val_acc_history.append(val_acc) | |||
# Decay learning rate | |||
learning_rate *= learning_rate_decay | |||
return { | |||
'loss_history': loss_history, | |||
'train_acc_history': train_acc_history, | |||
'val_acc_history': val_acc_history, | |||
} | |||
def predict(self, X): | |||
""" | |||
Use the trained weights of this two-layer network to predict labels for | |||
data points. For each data point we predict scores for each of the C | |||
classes, and assign each data point to the class with the highest score. | |||
Inputs: | |||
- X: A numpy array of shape (N, D) giving N D-dimensional data points to | |||
classify. | |||
Returns: | |||
- y_pred: A numpy array of shape (N,) giving predicted labels for each of | |||
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted | |||
to have class c, where 0 <= c < C. | |||
""" | |||
y_pred = None | |||
########################################################################### | |||
# TODO: Implement this function; it should be VERY simple! # | |||
########################################################################### | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return y_pred |
@ -0,0 +1,65 @@ | |||
from builtins import range | |||
import numpy as np | |||
from random import shuffle | |||
from past.builtins import xrange | |||
def softmax_loss_naive(W, X, y, reg): | |||
""" | |||
Softmax loss function, naive implementation (with loops) | |||
Inputs have dimension D, there are C classes, and we operate on minibatches | |||
of N examples. | |||
Inputs: | |||
- W: A numpy array of shape (D, C) containing weights. | |||
- X: A numpy array of shape (N, D) containing a minibatch of data. | |||
- y: A numpy array of shape (N,) containing training labels; y[i] = c means | |||
that X[i] has label c, where 0 <= c < C. | |||
- reg: (float) regularization strength | |||
Returns a tuple of: | |||
- loss as single float | |||
- gradient with respect to weights W; an array of same shape as W | |||
""" | |||
# Initialize the loss and gradient to zero. | |||
loss = 0.0 | |||
dW = np.zeros_like(W) | |||
############################################################################# | |||
# TODO: 使用显式循环计算softmax损失及其梯度。 | |||
# 将损失和梯度分别保存在loss和dW中。 | |||
# 如果你不小心,很容易遇到数值不稳定的情况。 | |||
# 不要忘了正则化! | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return loss, dW | |||
def softmax_loss_vectorized(W, X, y, reg): | |||
""" | |||
Softmax loss function, vectorized version. | |||
Inputs and outputs are the same as softmax_loss_naive. | |||
""" | |||
# Initialize the loss and gradient to zero. | |||
loss = 0.0 | |||
dW = np.zeros_like(W) | |||
############################################################################# | |||
# TODO: 不使用显式循环计算softmax损失及其梯度。 | |||
# 将损失和梯度分别保存在loss和dW中。 | |||
# 如果你不小心,很容易遇到数值不稳定的情况。 | |||
# 不要忘了正则化! | |||
############################################################################# | |||
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
pass | |||
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** | |||
return loss, dW |