// patric zhao, patric.zhao@intel.com // show SLM usage by Finite Difference Approximating Derivatives (fdad) #include #include using namespace sycl; #define random_float() (rand() / double(RAND_MAX)) #define BLOCK 256 #define CheckResult 0 constexpr int64_t N = 256 * 256 * 256 + 2; constexpr float delta = 0.001f; void verify(float *gpu, float *cpu, int N) { int error = 0; for(int i = 0; i < N; i++) { if(std::fabs(gpu[i] - cpu[i]) > 10e-3) { printf("\nError at %d GPU = %f, CPU = %f\n", i, gpu[i], cpu[i]); error++; } if(error > 20) break; } return; } int main() { // Enable queue profiling auto propList = cl::sycl::property_list {cl::sycl::property::queue::enable_profiling()}; queue my_gpu_queue(gpu_selector{}, propList); std::cout << "Selected GPU device: " << my_gpu_queue.get_device().get_info() << "\n"; float *input = malloc_host(N, my_gpu_queue); float *output_P_cpu = malloc_host(N-2, my_gpu_queue); float *input_Q = malloc_device(N, my_gpu_queue); float *output_P = malloc_device(N-2, my_gpu_queue); float *output_P_gpu = malloc_host(N-2, my_gpu_queue); // Init CPU data for(int64_t i = 0; i < N; i++) { input[i] = random_float(); } // CPU compuatation printf("\n Start Computation, Number of Elems = %ld \n", N); for(int64_t i = 0; i < N-2; i++) { output_P_cpu[i] = (input[i+2] - input[i]) / (2.0f * delta); } float duration_gpu_a = 0.0; float duration_gpu_b = 0.0; // Copy from host(CPU) to device(GPU) my_gpu_queue.memcpy(input_Q, input, N * sizeof(float)).wait(); int warmup = 10; int iteration = 50; for(int i = 0; i < iteration + warmup; i++) { // read/write global memory directly auto event1 = my_gpu_queue.submit([&](handler& h) { h.parallel_for(nd_range<1>{N-2, BLOCK}, [=](nd_item<1> item) { auto global_id = item.get_global_id(0); output_P[global_id] = (input_Q[global_id +2] - input_Q[global_id]) / (2.0f * delta); }); }); // wait the computation done my_gpu_queue.wait(); if (i >= warmup) { duration_gpu_a += (event1.get_profiling_info() - event1.get_profiling_info()) /1000.0f/1000.0f; } if (CheckResult) { my_gpu_queue.memcpy(output_P_gpu, output_P, (N - 2) * sizeof(float)).wait(); verify(output_P_gpu, output_P_gpu, N); } // read data to SLM and then computaiton w/ SLM read // finally write back to global memory auto event2 = my_gpu_queue.submit([&](handler& h) { // Define SLM size per work-group sycl::accessor slm_buffer(BLOCK + 2, h); h.parallel_for(nd_range<1>(N-2, BLOCK), [=](nd_item<1> item) { auto local_id = item.get_local_id(0); auto global_id = item.get_global_id(0); slm_buffer[local_id] = input_Q[global_id]; if(local_id == BLOCK-1) { slm_buffer[BLOCK ] = input_Q[global_id +1]; slm_buffer[BLOCK+1] = input_Q[global_id +2]; } item.barrier(sycl::access::fence_space::local_space); output_P[global_id] = (slm_buffer[local_id +2] - slm_buffer[local_id]) / (2.0f * delta); }); }); my_gpu_queue.wait(); if (i >= warmup) { duration_gpu_b += (event2.get_profiling_info() - event2.get_profiling_info()) /1000.0f/1000.0f; } if (CheckResult) { my_gpu_queue.memcpy(output_P_gpu, output_P, (N - 2) * sizeof(float)).wait(); verify(output_P_gpu, output_P_gpu, N); } } printf("\n GPU Computation, GPU Time w/o SLM = %lf \n", duration_gpu_a / iteration); printf("\n GPU Computation, GPU Time w/ SLM = %lf \n", duration_gpu_b / iteration); printf("\nTask Done!\n"); free(input_Q, my_gpu_queue); free(output_P, my_gpu_queue); free(output_P_cpu, my_gpu_queue); free(output_P_gpu, my_gpu_queue); free(input, my_gpu_queue); return 0; }