|
|
@ -0,0 +1,193 @@ |
|
|
|
//Patri Zhao: patric.zhao@intel.com
|
|
|
|
|
|
|
|
#include <chrono>
|
|
|
|
#include <iostream>
|
|
|
|
#include <CL/sycl.hpp>
|
|
|
|
|
|
|
|
#define random_float() (rand() / double(RAND_MAX))
|
|
|
|
|
|
|
|
using namespace std; |
|
|
|
using namespace sycl; |
|
|
|
|
|
|
|
#define tileY 2
|
|
|
|
#define tileX 2
|
|
|
|
|
|
|
|
// return execution time
|
|
|
|
double gpu_kernel(float *A, float *B, float *C, |
|
|
|
int M, int N, int K, |
|
|
|
int BLOCK, sycl::queue &q) { |
|
|
|
|
|
|
|
// define the workgroup size and mapping
|
|
|
|
auto grid_rows = M / tileX; |
|
|
|
auto grid_cols = N / tileY; |
|
|
|
auto local_ndrange = range<2>(BLOCK, BLOCK); |
|
|
|
auto global_ndrange = range<2>(grid_rows, grid_cols); |
|
|
|
|
|
|
|
double duration = 0.0f; |
|
|
|
|
|
|
|
auto e = q.submit([&](sycl::handler &h) { |
|
|
|
h.parallel_for<class k_name_t>( |
|
|
|
sycl::nd_range<2>(global_ndrange, local_ndrange), [=](sycl::nd_item<2> index) { |
|
|
|
|
|
|
|
int row = tileX * index.get_global_id(0); |
|
|
|
int col = tileY * index.get_global_id(1); |
|
|
|
|
|
|
|
float sum[tileY][tileX] = {0.0f}; |
|
|
|
float subA[tileY] = {0.0f}; |
|
|
|
float subB[tileX] = {0.0f}; |
|
|
|
|
|
|
|
// core computation
|
|
|
|
for (int k = 0; k < N; k++) { |
|
|
|
|
|
|
|
// read data to register
|
|
|
|
for(int m = 0; m < tileY; m++) { |
|
|
|
subA[m] = A[(row + m) * N + k]; |
|
|
|
} |
|
|
|
|
|
|
|
for(int p = 0; p < tileX; p++) { |
|
|
|
subB[p] = B[k * N + p + col]; |
|
|
|
} |
|
|
|
|
|
|
|
for (int m = 0; m < tileY; m++) { |
|
|
|
for (int p = 0; p < tileX; p++) { |
|
|
|
sum[m][p] += subA[m] * subB[p]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
} //end of K
|
|
|
|
|
|
|
|
// write results back
|
|
|
|
for (int m = 0; m < tileY; m++) { |
|
|
|
for (int p = 0; p < tileX; p++) { |
|
|
|
C[(row + m) * N + col + p] = sum[m][p]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
}); |
|
|
|
}); |
|
|
|
e.wait(); |
|
|
|
|
|
|
|
duration += (e.get_profiling_info<info::event_profiling::command_end>() - |
|
|
|
e.get_profiling_info<info::event_profiling::command_start>()) /1000.0f/1000.0f; |
|
|
|
|
|
|
|
return(duration); |
|
|
|
} |
|
|
|
|
|
|
|
// return execution time
|
|
|
|
double cpu_kernel(float *cA, float *cB, float *cC, int M, int N, int K) { |
|
|
|
|
|
|
|
double duration = 0.0; |
|
|
|
std::chrono::high_resolution_clock::time_point s, e; |
|
|
|
|
|
|
|
// Single Thread Computation in CPU
|
|
|
|
s = std::chrono::high_resolution_clock::now(); |
|
|
|
for(int i = 0; i < M; i++) { |
|
|
|
for(int j = 0; j < N; j++) { |
|
|
|
float sum = 0.0f; |
|
|
|
for(int k = 0; k < K; k++) { |
|
|
|
sum += cA[i * K + k] * cB[k * N + j]; |
|
|
|
} |
|
|
|
cC[i * N + j] = sum; |
|
|
|
} |
|
|
|
} |
|
|
|
e = std::chrono::high_resolution_clock::now(); |
|
|
|
duration = std::chrono::duration<float, std::milli>(e - s).count(); |
|
|
|
|
|
|
|
return(duration); |
|
|
|
} |
|
|
|
|
|
|
|
int verify(float *cpu_res, float *gpu_res, int length){ |
|
|
|
int err = 0; |
|
|
|
for(int i = 0; i < length; i++) { |
|
|
|
if( fabs(cpu_res[i] - gpu_res[i]) > 1e-3) { |
|
|
|
err++; |
|
|
|
printf("\n%lf, %lf", cpu_res[i], gpu_res[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
return(err); |
|
|
|
} |
|
|
|
|
|
|
|
int gemm(const int M, |
|
|
|
const int N, |
|
|
|
const int K, |
|
|
|
const int block_size, |
|
|
|
const int iterations, |
|
|
|
sycl::queue &q) { |
|
|
|
|
|
|
|
cout << "Problem size: c(" << M << "," << N << ") =" |
|
|
|
<< " a(" << M << "," << K << ") *" |
|
|
|
<< " b(" << K << "," << N << ")\n"; |
|
|
|
|
|
|
|
auto A = malloc_shared<float>(M * K, q); |
|
|
|
auto B = malloc_shared<float>(K * N, q); |
|
|
|
auto C = malloc_shared<float>(M * N, q); |
|
|
|
auto C_host = malloc_host<float>(M * N, q); |
|
|
|
|
|
|
|
// init the A/B/C
|
|
|
|
for(int i=0; i < M * K; i++) { |
|
|
|
A[i] = random_float(); |
|
|
|
} |
|
|
|
|
|
|
|
for(int i=0; i < K * N; i++) { |
|
|
|
B[i] = random_float(); |
|
|
|
} |
|
|
|
|
|
|
|
for(int i=0; i < M * N; i++) { |
|
|
|
C[i] = 0.0f; |
|
|
|
C_host[i] = 0.0f; |
|
|
|
} |
|
|
|
|
|
|
|
double flopsPerMatrixMul |
|
|
|
= 2.0 * static_cast<double>(M) * static_cast<double>(N) * static_cast<double>(K); |
|
|
|
|
|
|
|
double duration_gpu = 0.0f; |
|
|
|
double duration_cpu = 0.0f; |
|
|
|
|
|
|
|
// GPU compuation and timer
|
|
|
|
int warmup = 10; |
|
|
|
for (int run = 0; run < iterations + warmup; run++) { |
|
|
|
float duration = gpu_kernel(A, B, C, M, N, K, block_size, q); |
|
|
|
if(run >= warmup) duration_gpu += duration; |
|
|
|
} |
|
|
|
duration_gpu = duration_gpu / iterations; |
|
|
|
|
|
|
|
// CPU compuation and timer
|
|
|
|
warmup = 2; |
|
|
|
for(int run = 0; run < iterations/2 + warmup; run++) { |
|
|
|
float duration = cpu_kernel(A, B, C_host, M, N, K); |
|
|
|
if(run >= warmup) duration_cpu += duration; |
|
|
|
} |
|
|
|
duration_cpu = duration_cpu / iterations/2; |
|
|
|
|
|
|
|
// Compare the resutls of CPU and GPU
|
|
|
|
int errCode = 0; |
|
|
|
errCode = verify(C_host, C, M*N); |
|
|
|
if(errCode > 0) printf("\nThere are %d errors\n", errCode); |
|
|
|
|
|
|
|
printf("\nGEMM size M = %d, N = %d, K = %d", M, N, K); |
|
|
|
printf("\nWork-Group size = %d * %d, tile_X = %d, tile_Y = %d", block_size, block_size, tileX, tileY); |
|
|
|
printf("\nPerformance Flops = %lf, \n" |
|
|
|
"GPU Computation Time = %lf (ms); \n" |
|
|
|
"CPU Computaiton Time = %lf (ms); \n", |
|
|
|
flopsPerMatrixMul, duration_gpu, duration_cpu); |
|
|
|
|
|
|
|
free(A, q); |
|
|
|
free(B, q); |
|
|
|
free(C, q); |
|
|
|
free(C_host, q); |
|
|
|
|
|
|
|
return(errCode); |
|
|
|
} |
|
|
|
|
|
|
|
int main() { |
|
|
|
|
|
|
|
auto propList = cl::sycl::property_list {cl::sycl::property::queue::enable_profiling()}; |
|
|
|
queue my_gpu_queue( cl::sycl::gpu_selector{} , propList); |
|
|
|
|
|
|
|
int errCode = gemm(512, 512, 512, /* GEMM size, M, N, K */ |
|
|
|
4, /* workgroup size */ |
|
|
|
10, /* repeat time */ |
|
|
|
my_gpu_queue); |
|
|
|
|
|
|
|
return(errCode); |
|
|
|
} |