10225501448 李度 10225101546 陈胤遒 10215501422 高宇菲
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 

845 lignes
23 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "leveldb/table.h"
#include <map>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/write_batch_internal.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/iterator.h"
#include "leveldb/table_builder.h"
#include "table/block.h"
#include "table/block_builder.h"
#include "table/format.h"
#include "util/random.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace leveldb {
// Return reverse of "key".
// Used to test non-lexicographic comparators.
static std::string Reverse(const Slice& key) {
std::string str(key.ToString());
std::string rev(str.rbegin(), str.rend());
return rev;
}
namespace {
class ReverseKeyComparator : public Comparator {
public:
virtual const char* Name() const {
return "leveldb.ReverseBytewiseComparator";
}
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(Reverse(a), Reverse(b));
}
virtual void FindShortestSeparator(
std::string* start,
const Slice& limit) const {
std::string s = Reverse(*start);
std::string l = Reverse(limit);
BytewiseComparator()->FindShortestSeparator(&s, l);
*start = Reverse(s);
}
virtual void FindShortSuccessor(std::string* key) const {
std::string s = Reverse(*key);
BytewiseComparator()->FindShortSuccessor(&s);
*key = Reverse(s);
}
};
}
static ReverseKeyComparator reverse_key_comparator;
static void Increment(const Comparator* cmp, std::string* key) {
if (cmp == BytewiseComparator()) {
key->push_back('\0');
} else {
assert(cmp == &reverse_key_comparator);
std::string rev = Reverse(*key);
rev.push_back('\0');
*key = Reverse(rev);
}
}
// An STL comparator that uses a Comparator
namespace {
struct STLLessThan {
const Comparator* cmp;
STLLessThan() : cmp(BytewiseComparator()) { }
STLLessThan(const Comparator* c) : cmp(c) { }
bool operator()(const std::string& a, const std::string& b) const {
return cmp->Compare(Slice(a), Slice(b)) < 0;
}
};
}
class StringSink: public WritableFile {
public:
~StringSink() { }
const std::string& contents() const { return contents_; }
virtual Status Close() { return Status::OK(); }
virtual Status Flush() { return Status::OK(); }
virtual Status Sync() { return Status::OK(); }
virtual Status Append(const Slice& data) {
contents_.append(data.data(), data.size());
return Status::OK();
}
private:
std::string contents_;
};
class StringSource: public RandomAccessFile {
public:
StringSource(const Slice& contents)
: contents_(contents.data(), contents.size()) {
}
virtual ~StringSource() { }
uint64_t Size() const { return contents_.size(); }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
if (offset > contents_.size()) {
return Status::InvalidArgument("invalid Read offset");
}
if (offset + n > contents_.size()) {
n = contents_.size() - offset;
}
memcpy(scratch, &contents_[offset], n);
*result = Slice(scratch, n);
return Status::OK();
}
private:
std::string contents_;
};
typedef std::map<std::string, std::string, STLLessThan> KVMap;
// Helper class for tests to unify the interface between
// BlockBuilder/TableBuilder and Block/Table.
class Constructor {
public:
explicit Constructor(const Comparator* cmp) : data_(STLLessThan(cmp)) { }
virtual ~Constructor() { }
void Add(const std::string& key, const Slice& value) {
data_[key] = value.ToString();
}
// Finish constructing the data structure with all the keys that have
// been added so far. Returns the keys in sorted order in "*keys"
// and stores the key/value pairs in "*kvmap"
void Finish(const Options& options,
std::vector<std::string>* keys,
KVMap* kvmap) {
*kvmap = data_;
keys->clear();
for (KVMap::const_iterator it = data_.begin();
it != data_.end();
++it) {
keys->push_back(it->first);
}
data_.clear();
Status s = FinishImpl(options, *kvmap);
ASSERT_TRUE(s.ok()) << s.ToString();
}
// Construct the data structure from the data in "data"
virtual Status FinishImpl(const Options& options, const KVMap& data) = 0;
virtual size_t NumBytes() const = 0;
virtual Iterator* NewIterator() const = 0;
virtual const KVMap& data() { return data_; }
virtual DB* db() const { return NULL; } // Overridden in DBConstructor
private:
KVMap data_;
};
class BlockConstructor: public Constructor {
public:
explicit BlockConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp),
block_size_(-1),
block_(NULL) { }
~BlockConstructor() {
delete block_;
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
delete block_;
block_ = NULL;
BlockBuilder builder(&options);
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
builder.Add(it->first, it->second);
}
// Open the block
Slice block_data = builder.Finish();
block_size_ = block_data.size();
char* block_data_copy = new char[block_size_];
memcpy(block_data_copy, block_data.data(), block_size_);
block_ = new Block(block_data_copy, block_size_);
return Status::OK();
}
virtual size_t NumBytes() const { return block_size_; }
virtual Iterator* NewIterator() const {
return block_->NewIterator(comparator_);
}
private:
const Comparator* comparator_;
int block_size_;
Block* block_;
BlockConstructor();
};
class TableConstructor: public Constructor {
public:
TableConstructor(const Comparator* cmp)
: Constructor(cmp),
source_(NULL), table_(NULL) {
}
~TableConstructor() {
Reset();
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
Reset();
StringSink sink;
TableBuilder builder(options, &sink);
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
builder.Add(it->first, it->second);
ASSERT_TRUE(builder.status().ok());
}
Status s = builder.Finish();
ASSERT_TRUE(s.ok()) << s.ToString();
ASSERT_EQ(sink.contents().size(), builder.FileSize());
// Open the table
source_ = new StringSource(sink.contents());
Options table_options;
table_options.comparator = options.comparator;
return Table::Open(table_options, source_, sink.contents().size(), &table_);
}
virtual size_t NumBytes() const { return source_->Size(); }
virtual Iterator* NewIterator() const {
return table_->NewIterator(ReadOptions());
}
uint64_t ApproximateOffsetOf(const Slice& key) const {
return table_->ApproximateOffsetOf(key);
}
private:
void Reset() {
delete table_;
delete source_;
table_ = NULL;
source_ = NULL;
}
StringSource* source_;
Table* table_;
TableConstructor();
};
// A helper class that converts internal format keys into user keys
class KeyConvertingIterator: public Iterator {
public:
explicit KeyConvertingIterator(Iterator* iter) : iter_(iter) { }
virtual ~KeyConvertingIterator() { delete iter_; }
virtual bool Valid() const { return iter_->Valid(); }
virtual void Seek(const Slice& target) {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->Seek(encoded);
}
virtual void SeekToFirst() { iter_->SeekToFirst(); }
virtual void SeekToLast() { iter_->SeekToLast(); }
virtual void Next() { iter_->Next(); }
virtual void Prev() { iter_->Prev(); }
virtual Slice key() const {
assert(Valid());
ParsedInternalKey key;
if (!ParseInternalKey(iter_->key(), &key)) {
status_ = Status::Corruption("malformed internal key");
return Slice("corrupted key");
}
return key.user_key;
}
virtual Slice value() const { return iter_->value(); }
virtual Status status() const {
return status_.ok() ? iter_->status() : status_;
}
private:
mutable Status status_;
Iterator* iter_;
// No copying allowed
KeyConvertingIterator(const KeyConvertingIterator&);
void operator=(const KeyConvertingIterator&);
};
class MemTableConstructor: public Constructor {
public:
explicit MemTableConstructor(const Comparator* cmp)
: Constructor(cmp),
internal_comparator_(cmp) {
memtable_ = new MemTable(internal_comparator_);
memtable_->Ref();
}
~MemTableConstructor() {
memtable_->Unref();
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
memtable_->Unref();
memtable_ = new MemTable(internal_comparator_);
memtable_->Ref();
int seq = 1;
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
memtable_->Add(seq, kTypeValue, it->first, it->second);
seq++;
}
return Status::OK();
}
virtual size_t NumBytes() const {
return memtable_->ApproximateMemoryUsage();
}
virtual Iterator* NewIterator() const {
return new KeyConvertingIterator(memtable_->NewIterator());
}
private:
InternalKeyComparator internal_comparator_;
MemTable* memtable_;
};
class DBConstructor: public Constructor {
public:
explicit DBConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp) {
db_ = NULL;
NewDB();
}
~DBConstructor() {
delete db_;
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
delete db_;
db_ = NULL;
NewDB();
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
WriteBatch batch;
batch.Put(it->first, it->second);
ASSERT_TRUE(db_->Write(WriteOptions(), &batch).ok());
}
return Status::OK();
}
virtual size_t NumBytes() const {
Range r("", "\xff\xff");
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
return size;
}
virtual Iterator* NewIterator() const {
return db_->NewIterator(ReadOptions());
}
virtual DB* db() const { return db_; }
private:
void NewDB() {
std::string name = test::TmpDir() + "/table_testdb";
Options options;
options.comparator = comparator_;
Status status = DestroyDB(name, options);
ASSERT_TRUE(status.ok()) << status.ToString();
options.create_if_missing = true;
options.error_if_exists = true;
options.write_buffer_size = 10000; // Something small to force merging
status = DB::Open(options, name, &db_);
ASSERT_TRUE(status.ok()) << status.ToString();
}
const Comparator* comparator_;
DB* db_;
};
enum TestType {
TABLE_TEST,
BLOCK_TEST,
MEMTABLE_TEST,
DB_TEST,
};
struct TestArgs {
TestType type;
bool reverse_compare;
int restart_interval;
};
static const TestArgs kTestArgList[] = {
{ TABLE_TEST, false, 16 },
{ TABLE_TEST, false, 1 },
{ TABLE_TEST, false, 1024 },
{ TABLE_TEST, true, 16 },
{ TABLE_TEST, true, 1 },
{ TABLE_TEST, true, 1024 },
{ BLOCK_TEST, false, 16 },
{ BLOCK_TEST, false, 1 },
{ BLOCK_TEST, false, 1024 },
{ BLOCK_TEST, true, 16 },
{ BLOCK_TEST, true, 1 },
{ BLOCK_TEST, true, 1024 },
// Restart interval does not matter for memtables
{ MEMTABLE_TEST, false, 16 },
{ MEMTABLE_TEST, true, 16 },
// Do not bother with restart interval variations for DB
{ DB_TEST, false, 16 },
{ DB_TEST, true, 16 },
};
static const int kNumTestArgs = sizeof(kTestArgList) / sizeof(kTestArgList[0]);
class Harness {
public:
Harness() : constructor_(NULL) { }
void Init(const TestArgs& args) {
delete constructor_;
constructor_ = NULL;
options_ = Options();
options_.block_restart_interval = args.restart_interval;
// Use shorter block size for tests to exercise block boundary
// conditions more.
options_.block_size = 256;
if (args.reverse_compare) {
options_.comparator = &reverse_key_comparator;
}
switch (args.type) {
case TABLE_TEST:
constructor_ = new TableConstructor(options_.comparator);
break;
case BLOCK_TEST:
constructor_ = new BlockConstructor(options_.comparator);
break;
case MEMTABLE_TEST:
constructor_ = new MemTableConstructor(options_.comparator);
break;
case DB_TEST:
constructor_ = new DBConstructor(options_.comparator);
break;
}
}
~Harness() {
delete constructor_;
}
void Add(const std::string& key, const std::string& value) {
constructor_->Add(key, value);
}
void Test(Random* rnd) {
std::vector<std::string> keys;
KVMap data;
constructor_->Finish(options_, &keys, &data);
TestForwardScan(keys, data);
TestBackwardScan(keys, data);
TestRandomAccess(rnd, keys, data);
}
void TestForwardScan(const std::vector<std::string>& keys,
const KVMap& data) {
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToFirst();
for (KVMap::const_iterator model_iter = data.begin();
model_iter != data.end();
++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
delete iter;
}
void TestBackwardScan(const std::vector<std::string>& keys,
const KVMap& data) {
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToLast();
for (KVMap::const_reverse_iterator model_iter = data.rbegin();
model_iter != data.rend();
++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Prev();
}
ASSERT_TRUE(!iter->Valid());
delete iter;
}
void TestRandomAccess(Random* rnd,
const std::vector<std::string>& keys,
const KVMap& data) {
static const bool kVerbose = false;
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
KVMap::const_iterator model_iter = data.begin();
if (kVerbose) fprintf(stderr, "---\n");
for (int i = 0; i < 200; i++) {
const int toss = rnd->Uniform(5);
switch (toss) {
case 0: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Next\n");
iter->Next();
++model_iter;
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 1: {
if (kVerbose) fprintf(stderr, "SeekToFirst\n");
iter->SeekToFirst();
model_iter = data.begin();
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 2: {
std::string key = PickRandomKey(rnd, keys);
model_iter = data.lower_bound(key);
if (kVerbose) fprintf(stderr, "Seek '%s'\n",
EscapeString(key).c_str());
iter->Seek(Slice(key));
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 3: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Prev\n");
iter->Prev();
if (model_iter == data.begin()) {
model_iter = data.end(); // Wrap around to invalid value
} else {
--model_iter;
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 4: {
if (kVerbose) fprintf(stderr, "SeekToLast\n");
iter->SeekToLast();
if (keys.empty()) {
model_iter = data.end();
} else {
std::string last = data.rbegin()->first;
model_iter = data.lower_bound(last);
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
}
}
delete iter;
}
std::string ToString(const KVMap& data, const KVMap::const_iterator& it) {
if (it == data.end()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const KVMap& data,
const KVMap::const_reverse_iterator& it) {
if (it == data.rend()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const Iterator* it) {
if (!it->Valid()) {
return "END";
} else {
return "'" + it->key().ToString() + "->" + it->value().ToString() + "'";
}
}
std::string PickRandomKey(Random* rnd, const std::vector<std::string>& keys) {
if (keys.empty()) {
return "foo";
} else {
const int index = rnd->Uniform(keys.size());
std::string result = keys[index];
switch (rnd->Uniform(3)) {
case 0:
// Return an existing key
break;
case 1: {
// Attempt to return something smaller than an existing key
if (result.size() > 0 && result[result.size()-1] > '\0') {
result[result.size()-1]--;
}
break;
}
case 2: {
// Return something larger than an existing key
Increment(options_.comparator, &result);
break;
}
}
return result;
}
}
// Returns NULL if not running against a DB
DB* db() const { return constructor_->db(); }
private:
Options options_;
Constructor* constructor_;
};
// Test the empty key
TEST(Harness, SimpleEmptyKey) {
for (int i = 0; i < kNumTestArgs; i++) {
Init(kTestArgList[i]);
Random rnd(test::RandomSeed() + 1);
Add("", "v");
Test(&rnd);
}
}
TEST(Harness, SimpleSingle) {
for (int i = 0; i < kNumTestArgs; i++) {
Init(kTestArgList[i]);
Random rnd(test::RandomSeed() + 2);
Add("abc", "v");
Test(&rnd);
}
}
TEST(Harness, SimpleMulti) {
for (int i = 0; i < kNumTestArgs; i++) {
Init(kTestArgList[i]);
Random rnd(test::RandomSeed() + 3);
Add("abc", "v");
Add("abcd", "v");
Add("ac", "v2");
Test(&rnd);
}
}
TEST(Harness, SimpleSpecialKey) {
for (int i = 0; i < kNumTestArgs; i++) {
Init(kTestArgList[i]);
Random rnd(test::RandomSeed() + 4);
Add("\xff\xff", "v3");
Test(&rnd);
}
}
TEST(Harness, Randomized) {
for (int i = 0; i < kNumTestArgs; i++) {
Init(kTestArgList[i]);
Random rnd(test::RandomSeed() + 5);
for (int num_entries = 0; num_entries < 2000;
num_entries += (num_entries < 50 ? 1 : 200)) {
if ((num_entries % 10) == 0) {
fprintf(stderr, "case %d of %d: num_entries = %d\n",
(i + 1), int(kNumTestArgs), num_entries);
}
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
}
}
}
TEST(Harness, RandomizedLongDB) {
Random rnd(test::RandomSeed());
TestArgs args = { DB_TEST, false, 16 };
Init(args);
int num_entries = 100000;
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
// We must have created enough data to force merging
std::string l0_files, l1_files;
ASSERT_TRUE(db()->GetProperty("leveldb.num-files-at-level0", &l0_files));
ASSERT_TRUE(db()->GetProperty("leveldb.num-files-at-level1", &l1_files));
ASSERT_GT(atoi(l0_files.c_str()) + atoi(l1_files.c_str()), 0);
}
class MemTableTest { };
TEST(MemTableTest, Simple) {
InternalKeyComparator cmp(BytewiseComparator());
MemTable* memtable = new MemTable(cmp);
memtable->Ref();
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
batch.Put(std::string("k1"), std::string("v1"));
batch.Put(std::string("k2"), std::string("v2"));
batch.Put(std::string("k3"), std::string("v3"));
batch.Put(std::string("largekey"), std::string("vlarge"));
ASSERT_TRUE(WriteBatchInternal::InsertInto(&batch, memtable).ok());
Iterator* iter = memtable->NewIterator();
iter->SeekToFirst();
while (iter->Valid()) {
fprintf(stderr, "key: '%s' -> '%s'\n",
iter->key().ToString().c_str(),
iter->value().ToString().c_str());
iter->Next();
}
delete iter;
memtable->Unref();
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
class TableTest { };
TEST(TableTest, ApproximateOffsetOfPlain) {
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
KVMap kvmap;
Options options;
options.block_size = 1024;
options.compression = kNoCompression;
c.Finish(options, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 611000));
}
static bool SnappyCompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Snappy_Compress(in.data(), in.size(), &out);
}
TEST(TableTest, ApproximateOffsetOfCompressed) {
if (!SnappyCompressionSupported()) {
fprintf(stderr, "skipping compression tests\n");
return;
}
Random rnd(301);
TableConstructor c(BytewiseComparator());
std::string tmp;
c.Add("k01", "hello");
c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
c.Add("k03", "hello3");
c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
std::vector<std::string> keys;
KVMap kvmap;
Options options;
options.block_size = 1024;
options.compression = kSnappyCompression;
c.Finish(options, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6000));
}
}
int main(int argc, char** argv) {
return leveldb::test::RunAllTests();
}