// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "leveldb/cache.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
|
|
#include "port/port.h"
|
|
#include "port/thread_annotations.h"
|
|
#include "util/hash.h"
|
|
#include "util/mutexlock.h"
|
|
|
|
namespace leveldb {
|
|
|
|
Cache::~Cache() {}
|
|
|
|
namespace {
|
|
|
|
// LRU cache implementation
|
|
//
|
|
// Cache entries have an "in_cache" boolean indicating whether the cache has a
|
|
// reference on the entry. The only ways that this can become false without the
|
|
// entry being passed to its "deleter" are via Erase(), via Insert() when
|
|
// an element with a duplicate key is inserted, or on destruction of the cache.
|
|
//
|
|
// The cache keeps two linked lists of items in the cache. All items in the
|
|
// cache are in one list or the other, and never both. Items still referenced
|
|
// by clients but erased from the cache are in neither list. The lists are:
|
|
// - in-use: contains the items currently referenced by clients, in no
|
|
// particular order. (This list is used for invariant checking. If we
|
|
// removed the check, elements that would otherwise be on this list could be
|
|
// left as disconnected singleton lists.)
|
|
// - LRU: contains the items not currently referenced by clients, in LRU order
|
|
// Elements are moved between these lists by the Ref() and Unref() methods,
|
|
// when they detect an element in the cache acquiring or losing its only
|
|
// external reference.
|
|
|
|
// An entry is a variable length heap-allocated structure. Entries
|
|
// are kept in a circular doubly linked list ordered by access time.
|
|
struct LRUHandle {
|
|
void* value;
|
|
void (*deleter)(const Slice&, void* value);
|
|
LRUHandle* next_hash;
|
|
LRUHandle* next;
|
|
LRUHandle* prev;
|
|
size_t charge; // TODO(opt): Only allow uint32_t?
|
|
size_t key_length;
|
|
bool in_cache; // Whether entry is in the cache.
|
|
uint32_t refs; // References, including cache reference, if present.
|
|
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
|
|
char key_data[1]; // Beginning of key
|
|
|
|
Slice key() const {
|
|
// next_ is only equal to this if the LRU handle is the list head of an
|
|
// empty list. List heads never have meaningful keys.
|
|
assert(next != this);
|
|
|
|
return Slice(key_data, key_length);
|
|
}
|
|
};
|
|
|
|
// We provide our own simple hash table since it removes a whole bunch
|
|
// of porting hacks and is also faster than some of the built-in hash
|
|
// table implementations in some of the compiler/runtime combinations
|
|
// we have tested. E.g., readrandom speeds up by ~5% over the g++
|
|
// 4.4.3's builtin hashtable.
|
|
class HandleTable {
|
|
public:
|
|
HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); }
|
|
~HandleTable() { delete[] list_; }
|
|
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
|
|
return *FindPointer(key, hash);
|
|
}
|
|
|
|
LRUHandle* Insert(LRUHandle* h) {
|
|
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
|
LRUHandle* old = *ptr;
|
|
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
|
*ptr = h;
|
|
if (old == nullptr) {
|
|
++elems_;
|
|
if (elems_ > length_) {
|
|
// Since each cache entry is fairly large, we aim for a small
|
|
// average linked list length (<= 1).
|
|
Resize();
|
|
}
|
|
}
|
|
return old;
|
|
}
|
|
|
|
LRUHandle* Remove(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = FindPointer(key, hash);
|
|
LRUHandle* result = *ptr;
|
|
if (result != nullptr) {
|
|
*ptr = result->next_hash;
|
|
--elems_;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
// The table consists of an array of buckets where each bucket is
|
|
// a linked list of cache entries that hash into the bucket.
|
|
uint32_t length_;
|
|
uint32_t elems_;
|
|
LRUHandle** list_;
|
|
|
|
// Return a pointer to slot that points to a cache entry that
|
|
// matches key/hash. If there is no such cache entry, return a
|
|
// pointer to the trailing slot in the corresponding linked list.
|
|
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = &list_[hash & (length_ - 1)];
|
|
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
|
ptr = &(*ptr)->next_hash;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void Resize() {
|
|
uint32_t new_length = 4;
|
|
while (new_length < elems_) {
|
|
new_length *= 2;
|
|
}
|
|
LRUHandle** new_list = new LRUHandle*[new_length];
|
|
memset(new_list, 0, sizeof(new_list[0]) * new_length);
|
|
uint32_t count = 0;
|
|
for (uint32_t i = 0; i < length_; i++) {
|
|
LRUHandle* h = list_[i];
|
|
while (h != nullptr) {
|
|
LRUHandle* next = h->next_hash;
|
|
uint32_t hash = h->hash;
|
|
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
|
|
h->next_hash = *ptr;
|
|
*ptr = h;
|
|
h = next;
|
|
count++;
|
|
}
|
|
}
|
|
assert(elems_ == count);
|
|
delete[] list_;
|
|
list_ = new_list;
|
|
length_ = new_length;
|
|
}
|
|
};
|
|
|
|
// A single shard of sharded cache.
|
|
class LRUCache {
|
|
public:
|
|
LRUCache();
|
|
~LRUCache();
|
|
|
|
// Separate from constructor so caller can easily make an array of LRUCache
|
|
void SetCapacity(size_t capacity) { capacity_ = capacity; }
|
|
|
|
// Like Cache methods, but with an extra "hash" parameter.
|
|
Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge,
|
|
void (*deleter)(const Slice& key, void* value));
|
|
Cache::Handle* Lookup(const Slice& key, uint32_t hash);
|
|
void Release(Cache::Handle* handle);
|
|
void Erase(const Slice& key, uint32_t hash);
|
|
void Prune();
|
|
size_t TotalCharge() const {
|
|
MutexLock l(&mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
private:
|
|
void LRU_Remove(LRUHandle* e);
|
|
void LRU_Append(LRUHandle* list, LRUHandle* e);
|
|
void Ref(LRUHandle* e);
|
|
void Unref(LRUHandle* e);
|
|
bool FinishErase(LRUHandle* e) EXCLUSIVE_LOCKS_REQUIRED(mutex_);
|
|
|
|
// Initialized before use.
|
|
size_t capacity_;
|
|
|
|
// mutex_ protects the following state.
|
|
mutable port::Mutex mutex_;
|
|
size_t usage_ GUARDED_BY(mutex_);
|
|
|
|
// Dummy head of LRU list.
|
|
// lru.prev is newest entry, lru.next is oldest entry.
|
|
// Entries have refs==1 and in_cache==true.
|
|
LRUHandle lru_ GUARDED_BY(mutex_);
|
|
|
|
// Dummy head of in-use list.
|
|
// Entries are in use by clients, and have refs >= 2 and in_cache==true.
|
|
LRUHandle in_use_ GUARDED_BY(mutex_);
|
|
|
|
HandleTable table_ GUARDED_BY(mutex_);
|
|
};
|
|
|
|
LRUCache::LRUCache() : capacity_(0), usage_(0) {
|
|
// Make empty circular linked lists.
|
|
lru_.next = &lru_;
|
|
lru_.prev = &lru_;
|
|
in_use_.next = &in_use_;
|
|
in_use_.prev = &in_use_;
|
|
}
|
|
|
|
LRUCache::~LRUCache() {
|
|
assert(in_use_.next == &in_use_); // Error if caller has an unreleased handle
|
|
for (LRUHandle* e = lru_.next; e != &lru_;) {
|
|
LRUHandle* next = e->next;
|
|
assert(e->in_cache);
|
|
e->in_cache = false;
|
|
assert(e->refs == 1); // Invariant of lru_ list.
|
|
Unref(e);
|
|
e = next;
|
|
}
|
|
}
|
|
|
|
void LRUCache::Ref(LRUHandle* e) {
|
|
if (e->refs == 1 && e->in_cache) { // If on lru_ list, move to in_use_ list.
|
|
LRU_Remove(e);
|
|
LRU_Append(&in_use_, e);
|
|
}
|
|
e->refs++;
|
|
}
|
|
|
|
void LRUCache::Unref(LRUHandle* e) {
|
|
assert(e->refs > 0);
|
|
e->refs--;
|
|
if (e->refs == 0) { // Deallocate.
|
|
assert(!e->in_cache);
|
|
(*e->deleter)(e->key(), e->value);
|
|
free(e);
|
|
} else if (e->in_cache && e->refs == 1) {
|
|
// No longer in use; move to lru_ list.
|
|
LRU_Remove(e);
|
|
LRU_Append(&lru_, e);
|
|
}
|
|
}
|
|
|
|
void LRUCache::LRU_Remove(LRUHandle* e) {
|
|
e->next->prev = e->prev;
|
|
e->prev->next = e->next;
|
|
}
|
|
|
|
void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) {
|
|
// Make "e" newest entry by inserting just before *list
|
|
e->next = list;
|
|
e->prev = list->prev;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
}
|
|
|
|
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
|
|
MutexLock l(&mutex_);
|
|
LRUHandle* e = table_.Lookup(key, hash);
|
|
if (e != nullptr) {
|
|
Ref(e);
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
void LRUCache::Release(Cache::Handle* handle) {
|
|
MutexLock l(&mutex_);
|
|
Unref(reinterpret_cast<LRUHandle*>(handle));
|
|
}
|
|
|
|
Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge,
|
|
void (*deleter)(const Slice& key,
|
|
void* value)) {
|
|
MutexLock l(&mutex_);
|
|
|
|
LRUHandle* e =
|
|
reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size()));
|
|
e->value = value;
|
|
e->deleter = deleter;
|
|
e->charge = charge;
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->in_cache = false;
|
|
e->refs = 1; // for the returned handle.
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
|
|
if (capacity_ > 0) {
|
|
e->refs++; // for the cache's reference.
|
|
e->in_cache = true;
|
|
LRU_Append(&in_use_, e);
|
|
usage_ += charge;
|
|
FinishErase(table_.Insert(e));
|
|
} else { // don't cache. (capacity_==0 is supported and turns off caching.)
|
|
// next is read by key() in an assert, so it must be initialized
|
|
e->next = nullptr;
|
|
}
|
|
while (usage_ > capacity_ && lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
assert(old->refs == 1);
|
|
bool erased = FinishErase(table_.Remove(old->key(), old->hash));
|
|
if (!erased) { // to avoid unused variable when compiled NDEBUG
|
|
assert(erased);
|
|
}
|
|
}
|
|
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
// If e != nullptr, finish removing *e from the cache; it has already been
|
|
// removed from the hash table. Return whether e != nullptr.
|
|
bool LRUCache::FinishErase(LRUHandle* e) {
|
|
if (e != nullptr) {
|
|
assert(e->in_cache);
|
|
LRU_Remove(e);
|
|
e->in_cache = false;
|
|
usage_ -= e->charge;
|
|
Unref(e);
|
|
}
|
|
return e != nullptr;
|
|
}
|
|
|
|
void LRUCache::Erase(const Slice& key, uint32_t hash) {
|
|
MutexLock l(&mutex_);
|
|
FinishErase(table_.Remove(key, hash));
|
|
}
|
|
|
|
void LRUCache::Prune() {
|
|
MutexLock l(&mutex_);
|
|
while (lru_.next != &lru_) {
|
|
LRUHandle* e = lru_.next;
|
|
assert(e->refs == 1);
|
|
bool erased = FinishErase(table_.Remove(e->key(), e->hash));
|
|
if (!erased) { // to avoid unused variable when compiled NDEBUG
|
|
assert(erased);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const int kNumShardBits = 4;
|
|
static const int kNumShards = 1 << kNumShardBits;
|
|
|
|
class ShardedLRUCache : public Cache {
|
|
private:
|
|
LRUCache shard_[kNumShards];
|
|
port::Mutex id_mutex_;
|
|
uint64_t last_id_;
|
|
|
|
static inline uint32_t HashSlice(const Slice& s) {
|
|
return Hash(s.data(), s.size(), 0);
|
|
}
|
|
|
|
static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); }
|
|
|
|
public:
|
|
explicit ShardedLRUCache(size_t capacity) : last_id_(0) {
|
|
const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
shard_[s].SetCapacity(per_shard);
|
|
}
|
|
}
|
|
~ShardedLRUCache() override {}
|
|
Handle* Insert(const Slice& key, void* value, size_t charge,
|
|
void (*deleter)(const Slice& key, void* value)) override {
|
|
const uint32_t hash = HashSlice(key);
|
|
return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter);
|
|
}
|
|
Handle* Lookup(const Slice& key) override {
|
|
const uint32_t hash = HashSlice(key);
|
|
return shard_[Shard(hash)].Lookup(key, hash);
|
|
}
|
|
void Release(Handle* handle) override {
|
|
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
|
|
shard_[Shard(h->hash)].Release(handle);
|
|
}
|
|
void Erase(const Slice& key) override {
|
|
const uint32_t hash = HashSlice(key);
|
|
shard_[Shard(hash)].Erase(key, hash);
|
|
}
|
|
void* Value(Handle* handle) override {
|
|
return reinterpret_cast<LRUHandle*>(handle)->value;
|
|
}
|
|
uint64_t NewId() override {
|
|
MutexLock l(&id_mutex_);
|
|
return ++(last_id_);
|
|
}
|
|
void Prune() override {
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
shard_[s].Prune();
|
|
}
|
|
}
|
|
size_t TotalCharge() const override {
|
|
size_t total = 0;
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
total += shard_[s].TotalCharge();
|
|
}
|
|
return total;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); }
|
|
|
|
} // namespace leveldb
|