// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_impl.h" #include "db/builder.h" #include "db/db_iter.h" #include "db/dbformat.h" #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/table_cache.h" #include "db/version_set.h" #include "db/write_batch_internal.h" #include #include #include #include #include #include #include #include #include #include "leveldb/db.h" #include "leveldb/env.h" #include "leveldb/status.h" #include "leveldb/table.h" #include "leveldb/table_builder.h" #include "port/port.h" #include "table/block.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/logging.h" #include "util/mutexlock.h" namespace leveldb { const int kNumNonTableCacheFiles = 10; // Information kept for every waiting writer struct DBImpl::Writer { explicit Writer(port::Mutex* mu) : batch(nullptr), sync(false), done(false), cv(mu) {} Status status; WriteBatch* batch; bool sync; bool done; port::CondVar cv; }; struct DBImpl::CompactionState { // Files produced by compaction struct Output { uint64_t number; uint64_t file_size; InternalKey smallest, largest; TIMESTAMP old_ts,new_ts; }; Output* current_output() { return &outputs[outputs.size() - 1]; } explicit CompactionState(Compaction* c) : compaction(c), smallest_snapshot(0), outfile(nullptr), builder(nullptr), total_bytes(0) {} Compaction* const compaction; // Sequence numbers < smallest_snapshot are not significant since we // will never have to service a snapshot below smallest_snapshot. // Therefore if we have seen a sequence number S <= smallest_snapshot, // we can drop all entries for the same key with sequence numbers < S. SequenceNumber smallest_snapshot; std::vector outputs; // State kept for output being generated WritableFile* outfile; TableBuilder* builder; uint64_t total_bytes; }; // Fix user-supplied options to be reasonable template static void ClipToRange(T* ptr, V minvalue, V maxvalue) { if (static_cast(*ptr) > maxvalue) *ptr = maxvalue; if (static_cast(*ptr) < minvalue) *ptr = minvalue; } Options SanitizeOptions(const std::string& dbname, const InternalKeyComparator* icmp, const InternalFilterPolicy* ipolicy, const Options& src) { Options result = src; result.comparator = icmp; result.filter_policy = (src.filter_policy != nullptr) ? ipolicy : nullptr; ClipToRange(&result.max_open_files, 64 + kNumNonTableCacheFiles, 50000); ClipToRange(&result.write_buffer_size, 64 << 10, 1 << 30); ClipToRange(&result.max_file_size, 1 << 20, 1 << 30); ClipToRange(&result.block_size, 1 << 10, 4 << 20); if (result.info_log == nullptr) { // Open a log file in the same directory as the db src.env->CreateDir(dbname); // In case it does not exist src.env->RenameFile(InfoLogFileName(dbname), OldInfoLogFileName(dbname)); Status s = src.env->NewLogger(InfoLogFileName(dbname), &result.info_log); if (!s.ok()) { // No place suitable for logging result.info_log = nullptr; } } if (result.block_cache == nullptr) { result.block_cache = NewLRUCache(8 << 20); } return result; } static int TableCacheSize(const Options& sanitized_options) { // Reserve ten files or so for other uses and give the rest to TableCache. return sanitized_options.max_open_files - kNumNonTableCacheFiles; } DBImpl::DBImpl(const Options& raw_options, const std::string& dbname) : env_(raw_options.env), internal_comparator_(raw_options.comparator), internal_filter_policy_(raw_options.filter_policy), options_(SanitizeOptions(dbname, &internal_comparator_, &internal_filter_policy_, raw_options)), owns_info_log_(options_.info_log != raw_options.info_log), owns_cache_(options_.block_cache != raw_options.block_cache), dbname_(dbname), table_cache_(new TableCache(dbname_, options_, TableCacheSize(options_))), db_lock_(nullptr), shutting_down_(false), background_work_finished_signal_(&mutex_), mem_(nullptr), imm_(nullptr), has_imm_(false), logfile_(nullptr), logfile_number_(0), log_(nullptr), seed_(0), tmp_batch_(new WriteBatch), background_compaction_scheduled_(false), manual_compaction_(nullptr), versions_(new VersionSet(dbname_, &options_, table_cache_, &internal_comparator_)) {} DBImpl::~DBImpl() { // Wait for background work to finish. mutex_.Lock(); shutting_down_.store(true, std::memory_order_release); while (background_compaction_scheduled_) { background_work_finished_signal_.Wait(); } mutex_.Unlock(); if (db_lock_ != nullptr) { env_->UnlockFile(db_lock_); } delete versions_; if (mem_ != nullptr) mem_->Unref(); if (imm_ != nullptr) imm_->Unref(); delete tmp_batch_; delete log_; delete logfile_; delete table_cache_; if (owns_info_log_) { delete options_.info_log; } if (owns_cache_) { delete options_.block_cache; } } Status DBImpl::NewDB() { VersionEdit new_db; new_db.SetComparatorName(user_comparator()->Name()); new_db.SetLogNumber(0); new_db.SetNextFile(2); new_db.SetLastSequence(0); const std::string manifest = DescriptorFileName(dbname_, 1); WritableFile* file; Status s = env_->NewWritableFile(manifest, &file); if (!s.ok()) { return s; } { log::Writer log(file); std::string record; new_db.EncodeTo(&record); s = log.AddRecord(record); if (s.ok()) { s = file->Sync(); } if (s.ok()) { s = file->Close(); } } delete file; if (s.ok()) { // Make "CURRENT" file that points to the new manifest file. s = SetCurrentFile(env_, dbname_, 1); } else { env_->RemoveFile(manifest); } return s; } void DBImpl::MaybeIgnoreError(Status* s) const { if (s->ok() || options_.paranoid_checks) { // No change needed } else { Log(options_.info_log, "Ignoring error %s", s->ToString().c_str()); *s = Status::OK(); } } void DBImpl::RemoveObsoleteFiles() { mutex_.AssertHeld(); if (!bg_error_.ok()) { // After a background error, we don't know whether a new version may // or may not have been committed, so we cannot safely garbage collect. return; } // Make a set of all of the live files std::set live = pending_outputs_; versions_->AddLiveFiles(&live); std::vector filenames; env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose uint64_t number; FileType type; std::vector files_to_delete; for (std::string& filename : filenames) { if (ParseFileName(filename, &number, &type)) { bool keep = true; switch (type) { case kLogFile: keep = ((number >= versions_->LogNumber()) || (number == versions_->PrevLogNumber())); break; case kDescriptorFile: // Keep my manifest file, and any newer incarnations' // (in case there is a race that allows other incarnations) keep = (number >= versions_->ManifestFileNumber()); break; case kTableFile: keep = (live.find(number) != live.end()); break; case kTempFile: // Any temp files that are currently being written to must // be recorded in pending_outputs_, which is inserted into "live" keep = (live.find(number) != live.end()); break; case kCurrentFile: case kDBLockFile: case kInfoLogFile: keep = true; break; } if (!keep) { files_to_delete.push_back(std::move(filename)); if (type == kTableFile) { table_cache_->Evict(number); } Log(options_.info_log, "Delete type=%d #%lld\n", static_cast(type), static_cast(number)); } } } // While deleting all files unblock other threads. All files being deleted // have unique names which will not collide with newly created files and // are therefore safe to delete while allowing other threads to proceed. mutex_.Unlock(); for (const std::string& filename : files_to_delete) { env_->RemoveFile(dbname_ + "/" + filename); } mutex_.Lock(); } Status DBImpl::Recover(VersionEdit* edit, bool* save_manifest) { mutex_.AssertHeld(); // Ignore error from CreateDir since the creation of the DB is // committed only when the descriptor is created, and this directory // may already exist from a previous failed creation attempt. env_->CreateDir(dbname_); assert(db_lock_ == nullptr); Status s = env_->LockFile(LockFileName(dbname_), &db_lock_); if (!s.ok()) { return s; } if (!env_->FileExists(CurrentFileName(dbname_))) { if (options_.create_if_missing) { Log(options_.info_log, "Creating DB %s since it was missing.", dbname_.c_str()); s = NewDB(); if (!s.ok()) { return s; } } else { return Status::InvalidArgument( dbname_, "does not exist (create_if_missing is false)"); } } else { if (options_.error_if_exists) { return Status::InvalidArgument(dbname_, "exists (error_if_exists is true)"); } } s = versions_->Recover(save_manifest); if (!s.ok()) { return s; } SequenceNumber max_sequence(0); // Recover from all newer log files than the ones named in the // descriptor (new log files may have been added by the previous // incarnation without registering them in the descriptor). // // Note that PrevLogNumber() is no longer used, but we pay // attention to it in case we are recovering a database // produced by an older version of leveldb. const uint64_t min_log = versions_->LogNumber(); const uint64_t prev_log = versions_->PrevLogNumber(); std::vector filenames; s = env_->GetChildren(dbname_, &filenames); if (!s.ok()) { return s; } std::set expected; versions_->AddLiveFiles(&expected); uint64_t number; FileType type; std::vector logs; for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &type)) { expected.erase(number); if (type == kLogFile && ((number >= min_log) || (number == prev_log))) logs.push_back(number); } } if (!expected.empty()) { char buf[50]; std::snprintf(buf, sizeof(buf), "%d missing files; e.g.", static_cast(expected.size())); return Status::Corruption(buf, TableFileName(dbname_, *(expected.begin()))); } // Recover in the order in which the logs were generated std::sort(logs.begin(), logs.end()); for (size_t i = 0; i < logs.size(); i++) { s = RecoverLogFile(logs[i], (i == logs.size() - 1), save_manifest, edit, &max_sequence); if (!s.ok()) { return s; } // The previous incarnation may not have written any MANIFEST // records after allocating this log number. So we manually // update the file number allocation counter in VersionSet. versions_->MarkFileNumberUsed(logs[i]); } if (versions_->LastSequence() < max_sequence) { versions_->SetLastSequence(max_sequence); } return Status::OK(); } Status DBImpl::RecoverLogFile(uint64_t log_number, bool last_log, bool* save_manifest, VersionEdit* edit, SequenceNumber* max_sequence) { struct LogReporter : public log::Reader::Reporter { Env* env; Logger* info_log; const char* fname; Status* status; // null if options_.paranoid_checks==false void Corruption(size_t bytes, const Status& s) override { Log(info_log, "%s%s: dropping %d bytes; %s", (this->status == nullptr ? "(ignoring error) " : ""), fname, static_cast(bytes), s.ToString().c_str()); if (this->status != nullptr && this->status->ok()) *this->status = s; } }; mutex_.AssertHeld(); // Open the log file std::string fname = LogFileName(dbname_, log_number); SequentialFile* file; Status status = env_->NewSequentialFile(fname, &file); if (!status.ok()) { MaybeIgnoreError(&status); return status; } // Create the log reader. LogReporter reporter; reporter.env = env_; reporter.info_log = options_.info_log; reporter.fname = fname.c_str(); reporter.status = (options_.paranoid_checks ? &status : nullptr); // We intentionally make log::Reader do checksumming even if // paranoid_checks==false so that corruptions cause entire commits // to be skipped instead of propagating bad information (like overly // large sequence numbers). log::Reader reader(file, &reporter, true /*checksum*/, 0 /*initial_offset*/); Log(options_.info_log, "Recovering log #%llu", (unsigned long long)log_number); // Read all the records and add to a memtable std::string scratch; Slice record; WriteBatch batch; int compactions = 0; MemTable* mem = nullptr; while (reader.ReadRecord(&record, &scratch) && status.ok()) { if (record.size() < 12) { reporter.Corruption(record.size(), Status::Corruption("log record too small")); continue; } WriteBatchInternal::SetContents(&batch, record); if (mem == nullptr) { mem = new MemTable(internal_comparator_); mem->Ref(); } status = WriteBatchInternal::InsertInto(&batch, mem); MaybeIgnoreError(&status); if (!status.ok()) { break; } const SequenceNumber last_seq = WriteBatchInternal::Sequence(&batch) + WriteBatchInternal::Count(&batch) - 1; if (last_seq > *max_sequence) { *max_sequence = last_seq; } if (mem->ApproximateMemoryUsage() > options_.write_buffer_size) { compactions++; *save_manifest = true; status = WriteLevel0Table(mem, edit, nullptr); mem->Unref(); mem = nullptr; if (!status.ok()) { // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. break; } } } delete file; // See if we should keep reusing the last log file. if (status.ok() && options_.reuse_logs && last_log && compactions == 0) { assert(logfile_ == nullptr); assert(log_ == nullptr); assert(mem_ == nullptr); uint64_t lfile_size; if (env_->GetFileSize(fname, &lfile_size).ok() && env_->NewAppendableFile(fname, &logfile_).ok()) { Log(options_.info_log, "Reusing old log %s \n", fname.c_str()); log_ = new log::Writer(logfile_, lfile_size); logfile_number_ = log_number; if (mem != nullptr) { mem_ = mem; mem = nullptr; } else { // mem can be nullptr if lognum exists but was empty. mem_ = new MemTable(internal_comparator_); mem_->Ref(); } } } if (mem != nullptr) { // mem did not get reused; compact it. if (status.ok()) { *save_manifest = true; status = WriteLevel0Table(mem, edit, nullptr); } mem->Unref(); } return status; } Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit, Version* base) { mutex_.AssertHeld(); const uint64_t start_micros = env_->NowMicros(); FileMetaData meta; meta.number = versions_->NewFileNumber(); pending_outputs_.insert(meta.number); Iterator* iter = mem->NewIterator(); Log(options_.info_log, "Level-0 table #%llu: started", (unsigned long long)meta.number); Status s; { mutex_.Unlock(); s = BuildTable(dbname_, env_, options_, table_cache_, iter, &meta);//meta包含largest_key,此时未刷盘meta,但meta.number对应生成的file会刷盘 mutex_.Lock(); } Log(options_.info_log, "Level-0 table #%llu: %lld bytes %s", (unsigned long long)meta.number, (unsigned long long)meta.file_size, s.ToString().c_str()); delete iter; pending_outputs_.erase(meta.number); // Note that if file_size is zero, the file has been deleted and // should not be added to the manifest. int level = 0; if (s.ok() && meta.file_size > 0) { const Slice min_user_key = meta.smallest.user_key(); const Slice max_user_key = meta.largest.user_key(); const TIMESTAMP new_ts = meta.newer_ts; const TIMESTAMP old_ts = meta.oldest_ts; if (base != nullptr) { level = base->PickLevelForMemTableOutput(min_user_key, max_user_key);// TODO :基于timestamp和size和seek的新的选择规则 } // edit->AddFile(level, meta.number, meta.file_size, meta.smallest, // meta.largest); edit->AddFile(level, meta.number, meta.file_size, meta.smallest, meta.largest,old_ts,new_ts); } CompactionStats stats; stats.micros = env_->NowMicros() - start_micros; stats.bytes_written = meta.file_size; stats_[level].Add(stats); return s; } void DBImpl::CompactMemTable() { mutex_.AssertHeld(); assert(imm_ != nullptr); // Save the contents of the memtable as a new Table VersionEdit edit; Version* base = versions_->current(); base->Ref(); Status s = WriteLevel0Table(imm_, &edit, base); base->Unref(); if (s.ok() && shutting_down_.load(std::memory_order_acquire)) { s = Status::IOError("Deleting DB during memtable compaction"); } // Replace immutable memtable with the generated Table if (s.ok()) { edit.SetPrevLogNumber(0); edit.SetLogNumber(logfile_number_); // Earlier logs no longer needed s = versions_->LogAndApply(&edit, &mutex_); } if (s.ok()) { // Commit to the new state imm_->Unref(); imm_ = nullptr; has_imm_.store(false, std::memory_order_release); RemoveObsoleteFiles(); } else { RecordBackgroundError(s); } } void DBImpl::CompactRange(const Slice* begin, const Slice* end) { int max_level_with_files = 1; { MutexLock l(&mutex_); Version* base = versions_->current(); for (int level = 1; level < config::kNumLevels; level++) { if (base->OverlapInLevel(level, begin, end)) { max_level_with_files = level; } } } TEST_CompactMemTable(); // TODO(sanjay): Skip if memtable does not overlap for (int level = 0; level < max_level_with_files; level++) { TEST_CompactRange(level, begin, end); } TEST_CompactRange(max_level_with_files, begin, end); } void DBImpl::TEST_CompactRange(int level, const Slice* begin, const Slice* end) { assert(level >= 0); assert(level + 1 < config::kNumLevels); InternalKey begin_storage, end_storage; ManualCompaction manual; manual.level = level; manual.done = false; if (begin == nullptr) { manual.begin = nullptr; } else { begin_storage = InternalKey(*begin, kMaxSequenceNumber, kValueTypeForSeek); manual.begin = &begin_storage; } if (end == nullptr) { manual.end = nullptr; } else { end_storage = InternalKey(*end, 0, static_cast(0)); manual.end = &end_storage; } MutexLock l(&mutex_); while (!manual.done && !shutting_down_.load(std::memory_order_acquire) && bg_error_.ok()) { if (manual_compaction_ == nullptr) { // Idle manual_compaction_ = &manual; MaybeScheduleCompaction(); } else { // Running either my compaction or another compaction. background_work_finished_signal_.Wait(); } } // Finish current background compaction in the case where // `background_work_finished_signal_` was signalled due to an error. while (background_compaction_scheduled_) { background_work_finished_signal_.Wait(); } if (manual_compaction_ == &manual) { // Cancel my manual compaction since we aborted early for some reason. manual_compaction_ = nullptr; } } Status DBImpl::TEST_CompactMemTable() { // nullptr batch means just wait for earlier writes to be done Status s = Write(WriteOptions(), nullptr); if (s.ok()) { // Wait until the compaction completes MutexLock l(&mutex_); while (imm_ != nullptr && bg_error_.ok()) { background_work_finished_signal_.Wait(); } if (imm_ != nullptr) { s = bg_error_; } } return s; } void DBImpl::RecordBackgroundError(const Status& s) { mutex_.AssertHeld(); if (bg_error_.ok()) { bg_error_ = s; background_work_finished_signal_.SignalAll(); } } void DBImpl::MaybeScheduleCompaction() { mutex_.AssertHeld(); if (background_compaction_scheduled_) { // Already scheduled } else if (shutting_down_.load(std::memory_order_acquire)) { // DB is being deleted; no more background compactions } else if (!bg_error_.ok()) { // Already got an error; no more changes } else if (imm_ == nullptr && manual_compaction_ == nullptr && !versions_->NeedsCompaction()) { // No work to be done } else { background_compaction_scheduled_ = true; env_->Schedule(&DBImpl::BGWork, this); } } void DBImpl::BGWork(void* db) { reinterpret_cast(db)->BackgroundCall(); } void DBImpl::BackgroundCall() { MutexLock l(&mutex_); assert(background_compaction_scheduled_); if (shutting_down_.load(std::memory_order_acquire)) { // No more background work when shutting down. } else if (!bg_error_.ok()) { // No more background work after a background error. } else { BackgroundCompaction(); } background_compaction_scheduled_ = false; // Previous compaction may have produced too many files in a level, // so reschedule another compaction if needed. MaybeScheduleCompaction(); background_work_finished_signal_.SignalAll(); } void DBImpl::BackgroundCompaction() { mutex_.AssertHeld(); if (imm_ != nullptr) { CompactMemTable(); return; } Compaction* c; bool is_manual = (manual_compaction_ != nullptr); InternalKey manual_end; if (is_manual) { ManualCompaction* m = manual_compaction_; c = versions_->CompactRange(m->level, m->begin, m->end); m->done = (c == nullptr); if (c != nullptr) { manual_end = c->input(0, c->num_input_files(0) - 1)->largest; } Log(options_.info_log, "Manual compaction at level-%d from %s .. %s; will stop at %s\n", m->level, (m->begin ? m->begin->DebugString().c_str() : "(begin)"), (m->end ? m->end->DebugString().c_str() : "(end)"), (m->done ? "(end)" : manual_end.DebugString().c_str())); } else { c = versions_->PickCompaction(); } Status status; if (c == nullptr) { // Nothing to do } else if (!is_manual && c->IsTrivialMove()) { // Move file to next level assert(c->num_input_files(0) == 1); FileMetaData* f = c->input(0, 0); c->edit()->RemoveFile(c->level(), f->number); // c->edit()->AddFile(c->level() + 1, f->number, f->file_size, f->smallest, // f->largest); c->edit()->AddFile(c->level() + 1, f->number, f->file_size, f->smallest, f->largest,f->oldest_ts,f->newer_ts); status = versions_->LogAndApply(c->edit(), &mutex_); if (!status.ok()) { RecordBackgroundError(status); } VersionSet::LevelSummaryStorage tmp; Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n", static_cast(f->number), c->level() + 1, static_cast(f->file_size), status.ToString().c_str(), versions_->LevelSummary(&tmp)); } else { CompactionState* compact = new CompactionState(c); status = DoCompactionWork(compact);// if (!status.ok()) { RecordBackgroundError(status); } CleanupCompaction(compact); c->ReleaseInputs(); RemoveObsoleteFiles(); } delete c; if (status.ok()) { // Done } else if (shutting_down_.load(std::memory_order_acquire)) { // Ignore compaction errors found during shutting down } else { Log(options_.info_log, "Compaction error: %s", status.ToString().c_str()); } if (is_manual) { ManualCompaction* m = manual_compaction_; if (!status.ok()) { m->done = true; } if (!m->done) { // We only compacted part of the requested range. Update *m // to the range that is left to be compacted. m->tmp_storage = manual_end; m->begin = &m->tmp_storage; } manual_compaction_ = nullptr; } } void DBImpl::CleanupCompaction(CompactionState* compact) { mutex_.AssertHeld(); if (compact->builder != nullptr) { // May happen if we get a shutdown call in the middle of compaction compact->builder->Abandon(); delete compact->builder; } else { assert(compact->outfile == nullptr); } delete compact->outfile; for (size_t i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; pending_outputs_.erase(out.number); } delete compact; } Status DBImpl::OpenCompactionOutputFile(CompactionState* compact) { assert(compact != nullptr); assert(compact->builder == nullptr); uint64_t file_number; { mutex_.Lock(); file_number = versions_->NewFileNumber(); pending_outputs_.insert(file_number); CompactionState::Output out; out.number = file_number; out.smallest.Clear(); out.largest.Clear(); out.old_ts = UINT64_MAX; out.new_ts = 0; compact->outputs.push_back(out); mutex_.Unlock(); } // Make the output file std::string fname = TableFileName(dbname_, file_number); Status s = env_->NewWritableFile(fname, &compact->outfile); if (s.ok()) { compact->builder = new TableBuilder(options_, compact->outfile); } return s; } Status DBImpl::FinishCompactionOutputFile(CompactionState* compact, Iterator* input) { assert(compact != nullptr); assert(compact->outfile != nullptr); assert(compact->builder != nullptr); const uint64_t output_number = compact->current_output()->number; assert(output_number != 0); // Check for iterator errors Status s = input->status(); const uint64_t current_entries = compact->builder->NumEntries(); if (s.ok()) { s = compact->builder->Finish(); } else { compact->builder->Abandon(); } const uint64_t current_bytes = compact->builder->FileSize(); compact->current_output()->file_size = current_bytes; compact->total_bytes += current_bytes; delete compact->builder; compact->builder = nullptr; // Finish and check for file errors if (s.ok()) { s = compact->outfile->Sync(); } if (s.ok()) { s = compact->outfile->Close(); } delete compact->outfile; compact->outfile = nullptr; if (s.ok() && current_entries > 0) { // Verify that the table is usable Iterator* iter = table_cache_->NewIterator(ReadOptions(), output_number, current_bytes); s = iter->status(); delete iter; if (s.ok()) { Log(options_.info_log, "Generated table #%llu@%d: %lld keys, %lld bytes", (unsigned long long)output_number, compact->compaction->level(), (unsigned long long)current_entries, (unsigned long long)current_bytes); } } return s; } Status DBImpl::InstallCompactionResults(CompactionState* compact) { mutex_.AssertHeld(); Log(options_.info_log, "Compacted %d@%d + %d@%d files => %lld bytes", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1, static_cast(compact->total_bytes)); // Add compaction outputs compact->compaction->AddInputDeletions(compact->compaction->edit()); const int level = compact->compaction->level(); for (size_t i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; // compact->compaction->edit()->AddFile(level + 1, out.number, out.file_size, // out.smallest, out.largest); compact->compaction->edit()->AddFile(level + 1, out.number, out.file_size, out.smallest, out.largest,out.old_ts,out.new_ts); } return versions_->LogAndApply(compact->compaction->edit(), &mutex_); } Status DBImpl::DoCompactionWork(CompactionState* compact) { const uint64_t start_micros = env_->NowMicros(); int64_t imm_micros = 0; // Micros spent doing imm_ compactions Log(options_.info_log, "Compacting %d@%d + %d@%d files", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1); assert(versions_->NumLevelFiles(compact->compaction->level()) > 0); assert(compact->builder == nullptr); assert(compact->outfile == nullptr); if (snapshots_.empty()) { compact->smallest_snapshot = versions_->LastSequence(); } else { compact->smallest_snapshot = snapshots_.oldest()->sequence_number(); } Iterator* input = versions_->MakeInputIterator(compact->compaction); // Release mutex while we're actually doing the compaction work mutex_.Unlock(); input->SeekToFirst(); Status status; ParsedInternalKey ikey; TIMESTAMP ts = 0; std::string current_user_key; bool has_current_user_key = false; SequenceNumber last_sequence_for_key = kMaxSequenceNumber; while (input->Valid() && !shutting_down_.load(std::memory_order_acquire)) { // Prioritize immutable compaction work if (has_imm_.load(std::memory_order_relaxed)) { const uint64_t imm_start = env_->NowMicros(); mutex_.Lock(); if (imm_ != nullptr) { CompactMemTable(); // Wake up MakeRoomForWrite() if necessary. background_work_finished_signal_.SignalAll(); } mutex_.Unlock(); imm_micros += (env_->NowMicros() - imm_start); } Slice key = input->key(); if (compact->compaction->ShouldStopBefore(key) && compact->builder != nullptr) { status = FinishCompactionOutputFile(compact, input); if (!status.ok()) { break; } } //auto a = DecodeFixed64(input->value().data() + input->value().size() - kTSLength);//debug // Handle key/value, add to state, etc. bool drop = false; if (!ParseInternalKey(key, &ikey)) { // Do not hide error keys current_user_key.clear(); has_current_user_key = false; last_sequence_for_key = kMaxSequenceNumber; } else { if (!has_current_user_key || user_comparator()->Compare(ikey.user_key, Slice(current_user_key)) != 0) { // First occurrence of this user key current_user_key.assign(ikey.user_key.data(), ikey.user_key.size()); has_current_user_key = true; last_sequence_for_key = kMaxSequenceNumber; } if (last_sequence_for_key <= compact->smallest_snapshot) { // Hidden by an newer entry for same user key drop = true; // (A) } else if (ikey.type == kTypeDeletion && ikey.sequence <= compact->smallest_snapshot && compact->compaction->IsBaseLevelForKey(ikey.user_key)) { // For this user key: // (1) there is no data in higher levels // (2) data in lower levels will have larger sequence numbers // (3) data in layers that are being compacted here and have // smaller sequence numbers will be dropped in the next // few iterations of this loop (by rule (A) above). // Therefore this deletion marker is obsolete and can be dropped. drop = true; }else if((ts = DecodeFixed64(input->value().data() + input->value().size() - kTSLength)) < env_->NowMicros()){ drop = true; } last_sequence_for_key = ikey.sequence; } #if 0 Log(options_.info_log, " Compact: %s, seq %d, type: %d %d, drop: %d, is_base: %d, " "%d smallest_snapshot: %d", ikey.user_key.ToString().c_str(), (int)ikey.sequence, ikey.type, kTypeValue, drop, compact->compaction->IsBaseLevelForKey(ikey.user_key), (int)last_sequence_for_key, (int)compact->smallest_snapshot); #endif if (!drop) { // Open output file if necessary if (compact->builder == nullptr) { status = OpenCompactionOutputFile(compact); if (!status.ok()) { break; } } if (compact->builder->NumEntries() == 0) { compact->current_output()->smallest.DecodeFrom(key); } compact->current_output()->largest.DecodeFrom(key); assert(ts != 0); //auto b = compact->current_output()->old_ts; compact->current_output()->old_ts = std::min(compact->current_output()->old_ts,ts); compact->current_output()->new_ts = std::max(compact->current_output()->new_ts,ts); compact->builder->Add(key, input->value()); // Close output file if it is big enough if (compact->builder->FileSize() >= compact->compaction->MaxOutputFileSize()) { status = FinishCompactionOutputFile(compact, input); if (!status.ok()) { break; } } } input->Next(); } if (status.ok() && shutting_down_.load(std::memory_order_acquire)) { status = Status::IOError("Deleting DB during compaction"); } if (status.ok() && compact->builder != nullptr) { status = FinishCompactionOutputFile(compact, input); } if (status.ok()) { status = input->status(); } delete input; input = nullptr; CompactionStats stats; stats.micros = env_->NowMicros() - start_micros - imm_micros; for (int which = 0; which < 2; which++) { for (int i = 0; i < compact->compaction->num_input_files(which); i++) { stats.bytes_read += compact->compaction->input(which, i)->file_size; } } for (size_t i = 0; i < compact->outputs.size(); i++) { stats.bytes_written += compact->outputs[i].file_size; } mutex_.Lock(); stats_[compact->compaction->level() + 1].Add(stats); if (status.ok()) { status = InstallCompactionResults(compact); } if (!status.ok()) { RecordBackgroundError(status); } VersionSet::LevelSummaryStorage tmp; Log(options_.info_log, "compacted to: %s", versions_->LevelSummary(&tmp)); return status; } namespace { struct IterState { port::Mutex* const mu; Version* const version GUARDED_BY(mu); MemTable* const mem GUARDED_BY(mu); MemTable* const imm GUARDED_BY(mu); IterState(port::Mutex* mutex, MemTable* mem, MemTable* imm, Version* version) : mu(mutex), version(version), mem(mem), imm(imm) {} }; static void CleanupIteratorState(void* arg1, void* arg2) { IterState* state = reinterpret_cast(arg1); state->mu->Lock(); state->mem->Unref(); if (state->imm != nullptr) state->imm->Unref(); state->version->Unref(); state->mu->Unlock(); delete state; } } // anonymous namespace Iterator* DBImpl::NewInternalIterator(const ReadOptions& options, SequenceNumber* latest_snapshot, uint32_t* seed) { mutex_.Lock(); *latest_snapshot = versions_->LastSequence(); // Collect together all needed child iterators std::vector list; list.push_back(mem_->NewIterator()); mem_->Ref(); if (imm_ != nullptr) { list.push_back(imm_->NewIterator()); imm_->Ref(); } versions_->current()->AddIterators(options, &list); Iterator* internal_iter = NewMergingIterator(&internal_comparator_, &list[0], list.size()); versions_->current()->Ref(); IterState* cleanup = new IterState(&mutex_, mem_, imm_, versions_->current()); internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, nullptr); *seed = ++seed_; mutex_.Unlock(); return internal_iter; } Iterator* DBImpl::TEST_NewInternalIterator() { SequenceNumber ignored; uint32_t ignored_seed; return NewInternalIterator(ReadOptions(), &ignored, &ignored_seed); } int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() { MutexLock l(&mutex_); return versions_->MaxNextLevelOverlappingBytes(); } Status DBImpl::Get(const ReadOptions& options, const Slice& key, std::string* value) { Status s; MutexLock l(&mutex_); SequenceNumber snapshot; if (options.snapshot != nullptr) { snapshot = static_cast(options.snapshot)->sequence_number(); } else { snapshot = versions_->LastSequence(); } MemTable* mem = mem_; MemTable* imm = imm_; Version* current = versions_->current(); mem->Ref(); if (imm != nullptr) imm->Ref(); current->Ref(); bool have_stat_update = false; Version::GetStats stats; // Unlock while reading from files and memtables { mutex_.Unlock(); // First look in the memtable, then in the immutable memtable (if any). LookupKey lkey(key, snapshot); if (mem->Get(lkey, value, &s)) { // Done } else if (imm != nullptr && imm->Get(lkey, value, &s)) { // Done } else { stats.now_ts = this->env_->NowMicros(); s = current->Get(options, lkey, value, &stats); have_stat_update = true; } mutex_.Lock(); } if(s.ok()){ s = CheckIsExpire(value); } if (have_stat_update && current->UpdateStats(stats,s.IsExpire())) { MaybeScheduleCompaction();//有可能寻址过多,导致allow_seek为0,触发合并。 } mem->Unref(); if (imm != nullptr) imm->Unref(); current->Unref(); // if(!s.ok()){ // return s; // } // auto s2 = CheckIsExpire(value); // if(!s2.ok()){ // current->UpdateStats(stats); // } return s; } Iterator* DBImpl::NewIterator(const ReadOptions& options) { SequenceNumber latest_snapshot; uint32_t seed; Iterator* iter = NewInternalIterator(options, &latest_snapshot, &seed); return NewDBIterator(this, user_comparator(), iter, (options.snapshot != nullptr ? static_cast(options.snapshot) ->sequence_number() : latest_snapshot), seed); } void DBImpl::RecordReadSample(Slice key) { MutexLock l(&mutex_); if (versions_->current()->RecordReadSample(key)) { MaybeScheduleCompaction(); } } const Snapshot* DBImpl::GetSnapshot() { MutexLock l(&mutex_); return snapshots_.New(versions_->LastSequence()); } void DBImpl::ReleaseSnapshot(const Snapshot* snapshot) { MutexLock l(&mutex_); snapshots_.Delete(static_cast(snapshot)); } // Convenience methods Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) { return DB::Put(o, key, val); } Status DBImpl::Put(const WriteOptions& options, const Slice& key, const Slice& value, uint64_t ttl) { std::string val_with_ts; val_with_ts.reserve(value.size() + kTSLength); char ts_string[kTSLength]; TIMESTAMP expiration_time = this->env_->NowMicros() + ttl * 1000000; EncodeFixed64(ts_string,expiration_time); //assert(sizeof(expiration_time) == sizeof(TIMESTAMP )); // 追加原始 value 到 val_with_ts val_with_ts.append(value.data(), value.size()); // 将 expiration_time 追加到 val_with_ts val_with_ts.append(ts_string,kTSLength); return DB::Put(options, key, Slice(val_with_ts)); } Status DBImpl::Delete(const WriteOptions& options, const Slice& key) { return DB::Delete(options, key); } Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) { Writer w(&mutex_); w.batch = updates; w.sync = options.sync; w.done = false; MutexLock l(&mutex_); writers_.push_back(&w); while (!w.done && &w != writers_.front()) { w.cv.Wait(); } if (w.done) { return w.status; } // May temporarily unlock and wait. Status status = MakeRoomForWrite(updates == nullptr); uint64_t last_sequence = versions_->LastSequence(); Writer* last_writer = &w; if (status.ok() && updates != nullptr) { // nullptr batch is for compactions WriteBatch* write_batch = BuildBatchGroup(&last_writer); WriteBatchInternal::SetSequence(write_batch, last_sequence + 1); last_sequence += WriteBatchInternal::Count(write_batch); // Add to log and apply to memtable. We can release the lock // during this phase since &w is currently responsible for logging // and protects against concurrent loggers and concurrent writes // into mem_. { mutex_.Unlock(); status = log_->AddRecord(WriteBatchInternal::Contents(write_batch)); bool sync_error = false; if (status.ok() && options.sync) { status = logfile_->Sync(); if (!status.ok()) { sync_error = true; } } if (status.ok()) { status = WriteBatchInternal::InsertInto(write_batch, mem_); } mutex_.Lock(); if (sync_error) { // The state of the log file is indeterminate: the log record we // just added may or may not show up when the DB is re-opened. // So we force the DB into a mode where all future writes fail. RecordBackgroundError(status); } } if (write_batch == tmp_batch_) tmp_batch_->Clear(); versions_->SetLastSequence(last_sequence); } while (true) { Writer* ready = writers_.front(); writers_.pop_front(); if (ready != &w) { ready->status = status; ready->done = true; ready->cv.Signal(); } if (ready == last_writer) break; } // Notify new head of write queue if (!writers_.empty()) { writers_.front()->cv.Signal(); } return status; } // REQUIRES: Writer list must be non-empty // REQUIRES: First writer must have a non-null batch WriteBatch* DBImpl::BuildBatchGroup(Writer** last_writer) { mutex_.AssertHeld(); assert(!writers_.empty()); Writer* first = writers_.front(); WriteBatch* result = first->batch; assert(result != nullptr); size_t size = WriteBatchInternal::ByteSize(first->batch); // Allow the group to grow up to a maximum size, but if the // original write is small, limit the growth so we do not slow // down the small write too much. size_t max_size = 1 << 20; if (size <= (128 << 10)) { max_size = size + (128 << 10); } *last_writer = first; std::deque::iterator iter = writers_.begin(); ++iter; // Advance past "first" for (; iter != writers_.end(); ++iter) { Writer* w = *iter; if (w->sync && !first->sync) { // Do not include a sync write into a batch handled by a non-sync write. break; } if (w->batch != nullptr) { size += WriteBatchInternal::ByteSize(w->batch); if (size > max_size) { // Do not make batch too big break; } // Append to *result if (result == first->batch) { // Switch to temporary batch instead of disturbing caller's batch result = tmp_batch_; assert(WriteBatchInternal::Count(result) == 0); WriteBatchInternal::Append(result, first->batch); } WriteBatchInternal::Append(result, w->batch); } *last_writer = w; } return result; } // REQUIRES: mutex_ is held // REQUIRES: this thread is currently at the front of the writer queue Status DBImpl::MakeRoomForWrite(bool force) { mutex_.AssertHeld(); assert(!writers_.empty()); bool allow_delay = !force; Status s; while (true) { if (!bg_error_.ok()) { // Yield previous error s = bg_error_; break; } else if (allow_delay && versions_->NumLevelFiles(0) >= config::kL0_SlowdownWritesTrigger) { // We are getting close to hitting a hard limit on the number of // L0 files. Rather than delaying a single write by several // seconds when we hit the hard limit, start delaying each // individual write by 1ms to reduce latency variance. Also, // this delay hands over some CPU to the compaction thread in // case it is sharing the same core as the writer. mutex_.Unlock(); env_->SleepForMicroseconds(1000); allow_delay = false; // Do not delay a single write more than once mutex_.Lock(); } else if (!force && (mem_->ApproximateMemoryUsage() <= options_.write_buffer_size)) { // There is room in current memtable break; } else if (imm_ != nullptr) { // We have filled up the current memtable, but the previous // one is still being compacted, so we wait. Log(options_.info_log, "Current memtable full; waiting...\n"); background_work_finished_signal_.Wait(); } else if (versions_->NumLevelFiles(0) >= config::kL0_StopWritesTrigger) { // There are too many level-0 files. Log(options_.info_log, "Too many L0 files; waiting...\n"); background_work_finished_signal_.Wait(); } else { // Attempt to switch to a new memtable and trigger compaction of old assert(versions_->PrevLogNumber() == 0); uint64_t new_log_number = versions_->NewFileNumber(); WritableFile* lfile = nullptr; s = env_->NewWritableFile(LogFileName(dbname_, new_log_number), &lfile); if (!s.ok()) { // Avoid chewing through file number space in a tight loop. versions_->ReuseFileNumber(new_log_number); break; } delete log_; s = logfile_->Close(); if (!s.ok()) { // We may have lost some data written to the previous log file. // Switch to the new log file anyway, but record as a background // error so we do not attempt any more writes. // // We could perhaps attempt to save the memtable corresponding // to log file and suppress the error if that works, but that // would add more complexity in a critical code path. RecordBackgroundError(s); } delete logfile_; logfile_ = lfile; logfile_number_ = new_log_number; log_ = new log::Writer(lfile); imm_ = mem_; has_imm_.store(true, std::memory_order_release); mem_ = new MemTable(internal_comparator_); mem_->Ref(); force = false; // Do not force another compaction if have room MaybeScheduleCompaction(); } } return s; } bool DBImpl::GetProperty(const Slice& property, std::string* value) { value->clear(); MutexLock l(&mutex_); Slice in = property; Slice prefix("leveldb."); if (!in.starts_with(prefix)) return false; in.remove_prefix(prefix.size()); if (in.starts_with("num-files-at-level")) { in.remove_prefix(strlen("num-files-at-level")); uint64_t level; bool ok = ConsumeDecimalNumber(&in, &level) && in.empty(); if (!ok || level >= config::kNumLevels) { return false; } else { char buf[100]; std::snprintf(buf, sizeof(buf), "%d", versions_->NumLevelFiles(static_cast(level))); *value = buf; return true; } } else if (in == "stats") { char buf[200]; std::snprintf(buf, sizeof(buf), " Compactions\n" "Level Files Size(MB) Time(sec) Read(MB) Write(MB)\n" "--------------------------------------------------\n"); value->append(buf); for (int level = 0; level < config::kNumLevels; level++) { int files = versions_->NumLevelFiles(level); if (stats_[level].micros > 0 || files > 0) { std::snprintf(buf, sizeof(buf), "%3d %8d %8.0f %9.0f %8.0f %9.0f\n", level, files, versions_->NumLevelBytes(level) / 1048576.0, stats_[level].micros / 1e6, stats_[level].bytes_read / 1048576.0, stats_[level].bytes_written / 1048576.0); value->append(buf); } } return true; } else if (in == "sstables") { *value = versions_->current()->DebugString(); return true; } else if (in == "approximate-memory-usage") { size_t total_usage = options_.block_cache->TotalCharge(); if (mem_) { total_usage += mem_->ApproximateMemoryUsage(); } if (imm_) { total_usage += imm_->ApproximateMemoryUsage(); } char buf[50]; std::snprintf(buf, sizeof(buf), "%llu", static_cast(total_usage)); value->append(buf); return true; } return false; } void DBImpl::GetApproximateSizes(const Range* range, int n, uint64_t* sizes) { // TODO(opt): better implementation MutexLock l(&mutex_); Version* v = versions_->current(); v->Ref(); for (int i = 0; i < n; i++) { // Convert user_key into a corresponding internal key. InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek); InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek); uint64_t start = versions_->ApproximateOffsetOf(v, k1); uint64_t limit = versions_->ApproximateOffsetOf(v, k2); sizes[i] = (limit >= start ? limit - start : 0); } v->Unref(); } /** * * @param val * @param val_with_ts 在val后面连接上预计超时的timestamp * @param ttl 存活时间 */ void DBImpl::AppendTS(const Slice& val, std::string* val_with_ts,uint64_t ttl) { val_with_ts->reserve(kTSLength + val.size()); char ts_string[kTSLength]; uint64_t st = env_->GetCurrentTime() + ttl; *val_with_ts = val.ToString(); // 原始 value val_with_ts->append(reinterpret_cast(&st), sizeof(st)); } /** * * @param val * @return timestamp in val,and remove timestamp from val */ uint64_t DBImpl::GetTS(std::string* val) { auto expiration_time = DecodeFixed64(val->data() + val->size() - kTSLength); val->resize(val->size() - kTSLength); return expiration_time; } Status DBImpl::CheckIsExpire(std::string* value) { //debug 用 auto a = env_->NowMicros(); auto b = GetTS(value); if(a > b){ return Status::Expire("Expire",Slice()); } return Status(); } /** * * @param options * @param key * @param value * @param ttl * @return */ Status DB::Put(const WriteOptions& options, const Slice& key, const Slice& value, uint64_t ttl) { // 将 value 和 expiration_time 合并到一起,形成带 TTL 的 value std::string val_with_ts; val_with_ts.reserve(value.size() + sizeof(uint64_t)); uint64_t expiration_time = std::chrono::duration_cast( std::chrono::system_clock::now().time_since_epoch()) .count() + ttl * 1000; // 追加原始 value 到 val_with_ts val_with_ts.append(value.data(), value.size()); // 将 expiration_time 追加到 val_with_ts val_with_ts.append(reinterpret_cast(&expiration_time), sizeof(expiration_time)); // std::cout<<"PUT"<