// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include "util/histogram.h" #include "util/random.h" #include "util/testutil.h" // Comma-separated list of operations to run in the specified order // Actual benchmarks: // // fillseq -- write N values in sequential key order in async mode // fillseqsync -- write N/100 values in sequential key order in sync mode // fillseqbatch -- batch write N values in sequential key order in async mode // fillrandom -- write N values in random key order in async mode // fillrandsync -- write N/100 values in random key order in sync mode // fillrandbatch -- batch write N values in sequential key order in async mode // overwrite -- overwrite N values in random key order in async mode // fillrand100K -- write N/1000 100K values in random order in async mode // fillseq100K -- write N/1000 100K values in sequential order in async mode // readseq -- read N times sequentially // readrandom -- read N times in random order // readrand100K -- read N/1000 100K values in sequential order in async mode static const char* FLAGS_benchmarks = "fillseq," "fillseqsync," "fillseqbatch," "fillrandom," "fillrandsync," "fillrandbatch," "overwrite," "overwritebatch," "readrandom," "readseq," "fillrand100K," "fillseq100K," "readseq," "readrand100K,"; // Number of key/values to place in database static int FLAGS_num = 1000000; // Number of read operations to do. If negative, do FLAGS_num reads. static int FLAGS_reads = -1; // Size of each value static int FLAGS_value_size = 100; // Print histogram of operation timings static bool FLAGS_histogram = false; // Arrange to generate values that shrink to this fraction of // their original size after compression static double FLAGS_compression_ratio = 0.5; // Page size. Default 1 KB. static int FLAGS_page_size = 1024; // Number of pages. // Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB. static int FLAGS_num_pages = 4096; // If true, do not destroy the existing database. If you set this // flag and also specify a benchmark that wants a fresh database, that // benchmark will fail. static bool FLAGS_use_existing_db = false; // If true, the SQLite table has ROWIDs. static bool FLAGS_use_rowids = false; // If true, we allow batch writes to occur static bool FLAGS_transaction = true; // If true, we enable Write-Ahead Logging static bool FLAGS_WAL_enabled = true; // Use the db with the following name. static const char* FLAGS_db = nullptr; inline static void ExecErrorCheck(int status, char* err_msg) { if (status != SQLITE_OK) { fprintf(stderr, "SQL error: %s\n", err_msg); sqlite3_free(err_msg); exit(1); } } inline static void StepErrorCheck(int status) { if (status != SQLITE_DONE) { fprintf(stderr, "SQL step error: status = %d\n", status); exit(1); } } inline static void ErrorCheck(int status) { if (status != SQLITE_OK) { fprintf(stderr, "sqlite3 error: status = %d\n", status); exit(1); } } inline static void WalCheckpoint(sqlite3* db_) { // Flush all writes to disk if (FLAGS_WAL_enabled) { sqlite3_wal_checkpoint_v2(db_, nullptr, SQLITE_CHECKPOINT_FULL, nullptr, nullptr); } } namespace leveldb { // Helper for quickly generating random data. namespace { class RandomGenerator { private: std::string data_; int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < 1048576) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(int len) { if (pos_ + len > data_.size()) { pos_ = 0; assert(len < data_.size()); } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static Slice TrimSpace(Slice s) { int start = 0; while (start < s.size() && isspace(s[start])) { start++; } int limit = s.size(); while (limit > start && isspace(s[limit - 1])) { limit--; } return Slice(s.data() + start, limit - start); } } // namespace class Benchmark { private: sqlite3* db_; int db_num_; int num_; int reads_; double start_; double last_op_finish_; int64_t bytes_; std::string message_; Histogram hist_; RandomGenerator gen_; Random rand_; // State kept for progress messages int done_; int next_report_; // When to report next void PrintHeader() { const int kKeySize = 16; PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", kKeySize); fprintf(stdout, "Values: %d bytes each\n", FLAGS_value_size); fprintf(stdout, "Entries: %d\n", num_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(kKeySize + FLAGS_value_size) * num_) / 1048576.0)); PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf( stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif } void PrintEnvironment() { fprintf(stderr, "SQLite: version %s\n", SQLITE_VERSION); #if defined(__linux) time_t now = time(nullptr); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != nullptr) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != nullptr) { const char* sep = strchr(line, ':'); if (sep == nullptr) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } void Start() { start_ = Env::Default()->NowMicros() * 1e-6; bytes_ = 0; message_.clear(); last_op_finish_ = start_; hist_.Clear(); done_ = 0; next_report_ = 100; } void FinishedSingleOp() { if (FLAGS_histogram) { double now = Env::Default()->NowMicros() * 1e-6; double micros = (now - last_op_finish_) * 1e6; hist_.Add(micros); if (micros > 20000) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %d ops%30s\r", done_, ""); fflush(stderr); } } void Stop(const Slice& name) { double finish = Env::Default()->NowMicros() * 1e-6; // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedSingleOp(). if (done_ < 1) done_ = 1; if (bytes_ > 0) { char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / (finish - start_)); if (!message_.empty()) { message_ = std::string(rate) + " " + message_; } else { message_ = rate; } } fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n", name.ToString().c_str(), (finish - start_) * 1e6 / done_, (message_.empty() ? "" : " "), message_.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } public: enum Order { SEQUENTIAL, RANDOM }; enum DBState { FRESH, EXISTING }; Benchmark() : db_(nullptr), db_num_(0), num_(FLAGS_num), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), bytes_(0), rand_(301) { std::vector files; std::string test_dir; Env::Default()->GetTestDirectory(&test_dir); Env::Default()->GetChildren(test_dir, &files); if (!FLAGS_use_existing_db) { for (int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("dbbench_sqlite3")) { std::string file_name(test_dir); file_name += "/"; file_name += files[i]; Env::Default()->RemoveFile(file_name.c_str()); } } } } ~Benchmark() { int status = sqlite3_close(db_); ErrorCheck(status); } void Run() { PrintHeader(); Open(); const char* benchmarks = FLAGS_benchmarks; while (benchmarks != nullptr) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == nullptr) { name = benchmarks; benchmarks = nullptr; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } bytes_ = 0; Start(); bool known = true; bool write_sync = false; if (name == Slice("fillseq")) { Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1); WalCheckpoint(db_); } else if (name == Slice("fillseqbatch")) { Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000); WalCheckpoint(db_); } else if (name == Slice("fillrandom")) { Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1); WalCheckpoint(db_); } else if (name == Slice("fillrandbatch")) { Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000); WalCheckpoint(db_); } else if (name == Slice("overwrite")) { Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1); WalCheckpoint(db_); } else if (name == Slice("overwritebatch")) { Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000); WalCheckpoint(db_); } else if (name == Slice("fillrandsync")) { write_sync = true; Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1); WalCheckpoint(db_); } else if (name == Slice("fillseqsync")) { write_sync = true; Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1); WalCheckpoint(db_); } else if (name == Slice("fillrand100K")) { Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1); WalCheckpoint(db_); } else if (name == Slice("fillseq100K")) { Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1); WalCheckpoint(db_); } else if (name == Slice("readseq")) { ReadSequential(); } else if (name == Slice("readrandom")) { Read(RANDOM, 1); } else if (name == Slice("readrand100K")) { int n = reads_; reads_ /= 1000; Read(RANDOM, 1); reads_ = n; } else { known = false; if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); } } if (known) { Stop(name); } } } void Open() { assert(db_ == nullptr); int status; char file_name[100]; char* err_msg = nullptr; db_num_++; // Open database std::string tmp_dir; Env::Default()->GetTestDirectory(&tmp_dir); snprintf(file_name, sizeof(file_name), "%s/dbbench_sqlite3-%d.db", tmp_dir.c_str(), db_num_); status = sqlite3_open(file_name, &db_); if (status) { fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_)); exit(1); } // Change SQLite cache size char cache_size[100]; snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d", FLAGS_num_pages); status = sqlite3_exec(db_, cache_size, nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); // FLAGS_page_size is defaulted to 1024 if (FLAGS_page_size != 1024) { char page_size[100]; snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d", FLAGS_page_size); status = sqlite3_exec(db_, page_size, nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); } // Change journal mode to WAL if WAL enabled flag is on if (FLAGS_WAL_enabled) { std::string WAL_stmt = "PRAGMA journal_mode = WAL"; // LevelDB's default cache size is a combined 4 MB std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096"; status = sqlite3_exec(db_, WAL_stmt.c_str(), nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); status = sqlite3_exec(db_, WAL_checkpoint.c_str(), nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); } // Change locking mode to exclusive and create tables/index for database std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE"; std::string create_stmt = "CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))"; if (!FLAGS_use_rowids) create_stmt += " WITHOUT ROWID"; std::string stmt_array[] = {locking_stmt, create_stmt}; int stmt_array_length = sizeof(stmt_array) / sizeof(std::string); for (int i = 0; i < stmt_array_length; i++) { status = sqlite3_exec(db_, stmt_array[i].c_str(), nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); } } void Write(bool write_sync, Order order, DBState state, int num_entries, int value_size, int entries_per_batch) { // Create new database if state == FRESH if (state == FRESH) { if (FLAGS_use_existing_db) { message_ = "skipping (--use_existing_db is true)"; return; } sqlite3_close(db_); db_ = nullptr; Open(); Start(); } if (num_entries != num_) { char msg[100]; snprintf(msg, sizeof(msg), "(%d ops)", num_entries); message_ = msg; } char* err_msg = nullptr; int status; sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt; std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)"; std::string begin_trans_str = "BEGIN TRANSACTION;"; std::string end_trans_str = "END TRANSACTION;"; // Check for synchronous flag in options std::string sync_stmt = (write_sync) ? "PRAGMA synchronous = FULL" : "PRAGMA synchronous = OFF"; status = sqlite3_exec(db_, sync_stmt.c_str(), nullptr, nullptr, &err_msg); ExecErrorCheck(status, err_msg); // Preparing sqlite3 statements status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1, &replace_stmt, nullptr); ErrorCheck(status); status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1, &begin_trans_stmt, nullptr); ErrorCheck(status); status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt, nullptr); ErrorCheck(status); bool transaction = (entries_per_batch > 1); for (int i = 0; i < num_entries; i += entries_per_batch) { // Begin write transaction if (FLAGS_transaction && transaction) { status = sqlite3_step(begin_trans_stmt); StepErrorCheck(status); status = sqlite3_reset(begin_trans_stmt); ErrorCheck(status); } // Create and execute SQL statements for (int j = 0; j < entries_per_batch; j++) { const char* value = gen_.Generate(value_size).data(); // Create values for key-value pair const int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % num_entries); char key[100]; snprintf(key, sizeof(key), "%016d", k); // Bind KV values into replace_stmt status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC); ErrorCheck(status); status = sqlite3_bind_blob(replace_stmt, 2, value, value_size, SQLITE_STATIC); ErrorCheck(status); // Execute replace_stmt bytes_ += value_size + strlen(key); status = sqlite3_step(replace_stmt); StepErrorCheck(status); // Reset SQLite statement for another use status = sqlite3_clear_bindings(replace_stmt); ErrorCheck(status); status = sqlite3_reset(replace_stmt); ErrorCheck(status); FinishedSingleOp(); } // End write transaction if (FLAGS_transaction && transaction) { status = sqlite3_step(end_trans_stmt); StepErrorCheck(status); status = sqlite3_reset(end_trans_stmt); ErrorCheck(status); } } status = sqlite3_finalize(replace_stmt); ErrorCheck(status); status = sqlite3_finalize(begin_trans_stmt); ErrorCheck(status); status = sqlite3_finalize(end_trans_stmt); ErrorCheck(status); } void Read(Order order, int entries_per_batch) { int status; sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt; std::string read_str = "SELECT * FROM test WHERE key = ?"; std::string begin_trans_str = "BEGIN TRANSACTION;"; std::string end_trans_str = "END TRANSACTION;"; // Preparing sqlite3 statements status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1, &begin_trans_stmt, nullptr); ErrorCheck(status); status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt, nullptr); ErrorCheck(status); status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, nullptr); ErrorCheck(status); bool transaction = (entries_per_batch > 1); for (int i = 0; i < reads_; i += entries_per_batch) { // Begin read transaction if (FLAGS_transaction && transaction) { status = sqlite3_step(begin_trans_stmt); StepErrorCheck(status); status = sqlite3_reset(begin_trans_stmt); ErrorCheck(status); } // Create and execute SQL statements for (int j = 0; j < entries_per_batch; j++) { // Create key value char key[100]; int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_); snprintf(key, sizeof(key), "%016d", k); // Bind key value into read_stmt status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC); ErrorCheck(status); // Execute read statement while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) { } StepErrorCheck(status); // Reset SQLite statement for another use status = sqlite3_clear_bindings(read_stmt); ErrorCheck(status); status = sqlite3_reset(read_stmt); ErrorCheck(status); FinishedSingleOp(); } // End read transaction if (FLAGS_transaction && transaction) { status = sqlite3_step(end_trans_stmt); StepErrorCheck(status); status = sqlite3_reset(end_trans_stmt); ErrorCheck(status); } } status = sqlite3_finalize(read_stmt); ErrorCheck(status); status = sqlite3_finalize(begin_trans_stmt); ErrorCheck(status); status = sqlite3_finalize(end_trans_stmt); ErrorCheck(status); } void ReadSequential() { int status; sqlite3_stmt* pStmt; std::string read_str = "SELECT * FROM test ORDER BY key"; status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, nullptr); ErrorCheck(status); for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) { bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2); FinishedSingleOp(); } status = sqlite3_finalize(pStmt); ErrorCheck(status); } }; } // namespace leveldb int main(int argc, char** argv) { std::string default_db_path; for (int i = 1; i < argc; i++) { double d; int n; char junk; if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) { FLAGS_benchmarks = argv[i] + strlen("--benchmarks="); } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) { FLAGS_compression_ratio = d; } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_existing_db = n; } else if (sscanf(argv[i], "--use_rowids=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_rowids = n; } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) { FLAGS_num = n; } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) { FLAGS_reads = n; } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) { FLAGS_value_size = n; } else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) { FLAGS_transaction = false; } else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) { FLAGS_page_size = n; } else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) { FLAGS_num_pages = n; } else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_WAL_enabled = n; } else if (strncmp(argv[i], "--db=", 5) == 0) { FLAGS_db = argv[i] + 5; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } // Choose a location for the test database if none given with --db= if (FLAGS_db == nullptr) { leveldb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbbench"; FLAGS_db = default_db_path.c_str(); } leveldb::Benchmark benchmark; benchmark.Run(); return 0; }