| @ -0,0 +1,666 @@ | |||
| # LEVELDB TTL | |||
| #### 小组成员 | |||
| 谢瑞阳 徐翔宇 | |||
| ## 整体介绍 | |||
| 我们在整体实验过程中,经历了先后两版对于TLL功能的设计和开发过程,在开发第一版TTL功能的过程中,我们遇到了一些困难。经过思考讨论后,我们重构了全部代码,并基于新的设计快速的完成了TTL功能以及对应的垃圾回收功能。 | |||
| 我们仓库的地址为:https://gitea.shuishan.net.cn/10225101483/XOY-Leveldb | |||
| 其中每个分支对应的内容为: | |||
| master分支:主分支:第二版TTL设计。 | |||
| xry分支:第一版TTL设计,完成了在memtable中的带有TTL数据的存取(即在小数据量情况下可以正确运行测试脚本中的第一个测试)。 | |||
| xxy分支、new_version分支:第二版TTL设计。其中new_version分支与master分支内容相同。 | |||
| ### 设计思路 | |||
| 要完成TTL功能,首先也是最重要的内容即是要在原本leveldb存储数据的格式上增加一块用于存储TTL的空间,并且想明白如何对其进行读取,以及需要对其他存储空间(key,sequence number,value)的存取需要作出什么改动。 | |||
| 在写入数据时,涉及到编码的主要函数有以下三个: | |||
| leveldb通过WriteBatch::Put对传入的键值对进行编码,写入writebatch中。 | |||
| ```c++ | |||
| void WriteBatch::Put(const Slice& key, const Slice& value) { | |||
| WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); | |||
| rep_.push_back(static_cast<char>(kTypeValue)); | |||
| PutLengthPrefixedSlice(&rep_, key); | |||
| PutLengthPrefixedSlice(&rep_, value); | |||
| } | |||
| ``` | |||
| 之后,使用WriteBatch::Iterate将一个writebatch中的所有键值对依次解析并使用handler放入memtable。 | |||
| ```c++ | |||
| Slice input(rep_); | |||
| if (input.size() < kHeader) { | |||
| return Status::Corruption("malformed WriteBatch (too small)"); | |||
| } | |||
| input.remove_prefix(kHeader); | |||
| Slice key, value; | |||
| int found = 0; | |||
| while (!input.empty()) { | |||
| found++; | |||
| char tag = input[0]; | |||
| input.remove_prefix(1); | |||
| switch (tag) { | |||
| case kTypeValue: | |||
| if (GetLengthPrefixedSlice(&input, &key) && | |||
| GetLengthPrefixedSlice(&input, &value)) { | |||
| handler->Put(key, value); | |||
| } else { | |||
| return Status::Corruption("bad WriteBatch Put"); | |||
| } | |||
| break; | |||
| case kTypeDeletion: | |||
| if (GetLengthPrefixedSlice(&input, &key)) { | |||
| handler->Delete(key); | |||
| } else { | |||
| return Status::Corruption("bad WriteBatch Delete"); | |||
| } | |||
| break; | |||
| default: | |||
| return Status::Corruption("unknown WriteBatch tag"); | |||
| } | |||
| } | |||
| ``` | |||
| 之后,使用MemTable::Add将解析出来的数据重新编码,并插入至memtable,这种新的编码形式同样适用于SSTable。 | |||
| ```c++ | |||
| void MemTable::Add(SequenceNumber s, ValueType type, const Slice& key, | |||
| const Slice& value) { | |||
| // Format of an entry is concatenation of: | |||
| // key_size : varint32 of internal_key.size() | |||
| // key bytes : char[internal_key.size()] | |||
| // tag : uint64((sequence << 8) | type) | |||
| // value_size : varint32 of value.size() | |||
| // value bytes : char[value.size()] | |||
| size_t key_size = key.size(); | |||
| size_t val_size = value.size(); | |||
| size_t internal_key_size = key_size + 8; | |||
| const size_t encoded_len = VarintLength(internal_key_size) + | |||
| internal_key_size + VarintLength(val_size) + | |||
| val_size; | |||
| char* buf = arena_.Allocate(encoded_len); | |||
| char* p = EncodeVarint32(buf, internal_key_size); | |||
| std::memcpy(p, key.data(), key_size); | |||
| p += key_size; | |||
| EncodeFixed64(p, (s << 8) | type); | |||
| p += 8; | |||
| p = EncodeVarint32(p, val_size); | |||
| std::memcpy(p, value.data(), val_size); | |||
| assert(p + val_size == buf + encoded_len); | |||
| table_.Insert(buf); | |||
| } | |||
| ``` | |||
| 这是原本leveldb在memtable和sstable中存储单个键值对时使用的数据结构: | |||
|  | |||
| 其中,key和value对应着用户输入的键值对,而sequenceNumber是该键值对在leveldb内部的序列号(越大越新),type则标识该记录的类型。 | |||
| #### 第一版设计:增加在中 | |||
| 我们的第一版TTL存储设计如下: | |||
|  | |||
| 在我们最初的思考中,TTL与SequenceNumber、Type一样,属于和主要的存储内容(key,value)分割开的存储数据,因此我们选择将TTL加在SequenceNumber和Type后面(不加在中间和前面,以免破坏原先InternalKey的结构)。 | |||
| 但在实现过程中,我们发现在中间增加TTL的形式会导致许多代码变动,因为对数据编码形式的修改会导致InternalKey和LookupKey等基础的编码类及函数需要进行改动,它们在一些与TTL无关的地方似乎也被复用(比如versionEdit和大量测试函数),因此我们认为对其进行修改会非常复杂,可能导致leveldb其他模块受到牵连,不符合我们对TTL轻量级改动的构想。因此我们进行了讨论,并产生了如下的新版设计 | |||
| #### 第二版设计:放入Value | |||
| 我们的第二版TTL存储设计如下: | |||
|  | |||
| 由于 leveldb 本身对于 key、value、sequencenumber 的解析已经非常完善并且有些耦合,因此我们想要在不破坏 leveldb 原先的解析方式下完成 TTL 功能,我们想到的最好最轻量级的方式,就是将 TTL 数据作为 Value的一部分(在原 Value 后追加 8byte 作为 TTL )进行存储,仅当要解析 Value 时(即读取数据时或合并时),才会在同时对 TTL 进行解析。由此一来,我们无需改变原本的存储结构。事实证明,我们在很短时间内就完成了这一版 TTL的全部所需功能。 | |||
| ### 实现流程 | |||
| ### 第一版设计 | |||
| 首先,我们需要修改在 writebatch 中数据的存取格式(主要是对 Value 的读取需要向后偏移8位)。我们在 WriteBatch 中新增了 Put_for_ttl 函数,将 ttl 放置在 key,value 之前。 | |||
| ```c++ | |||
| void WriteBatch::Put_for_ttl(const Slice& key, const Slice& value,uint64_t ttl){ | |||
| WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); | |||
| rep_.push_back(static_cast<char>(kTypeValue)); | |||
| PutVarint64(&rep_,ttl); | |||
| PutLengthPrefixedSlice(&rep_, key); | |||
| PutLengthPrefixedSlice(&rep_, value); | |||
| } | |||
| ``` | |||
| 同时,对 WriteBatch 的迭代器也要进行修改。 | |||
|  | |||
| 使用 Add 将键值对加入 memtable 时,也要在 key 和 value 之间插入参数 ttl。具体位置在 key 末尾的 tag 之后,使用 EncodeFixed64 放入大小为 8 的 ttl 。 | |||
| ```c++ | |||
| void MemTable::Add(SequenceNumber s, ValueType type, const Slice& key, | |||
| const Slice& value,uint64_t ttl) { | |||
| // Format of an entry is concatenation of: | |||
| // key_size : varint32 of internal_key.size() | |||
| // key bytes : char[internal_key.size()] | |||
| // tag : uint64((sequence << 8) | type) | |||
| // ttl : uint64(now) | |||
| // value_size : varint32 of value.size() | |||
| // value bytes : char[value.size()] | |||
| size_t key_size = key.size(); | |||
| size_t val_size = value.size(); | |||
| size_t internal_key_size = key_size + 8; | |||
| const size_t encoded_len = VarintLength(internal_key_size) + | |||
| internal_key_size + 8 + VarintLength(val_size) + | |||
| val_size; | |||
| char* buf = arena_.Allocate(encoded_len); | |||
| //internal_key_size(sizeof(key)+sizeof(sequence+type)+sizeof(ttl)) | |||
| //--key--(sequence+type)--ttl--sizeof(val)--val | |||
| char* p = EncodeVarint32(buf, internal_key_size); | |||
| std::memcpy(p, key.data(), key_size); | |||
| p += key_size; | |||
| EncodeFixed64(p, (s << 8) | type); | |||
| p += 8; | |||
| EncodeFixed64(p,ttl); | |||
| p += 8; | |||
| p = EncodeVarint32(p, val_size); | |||
| std::memcpy(p, value.data(), val_size); | |||
| assert(p + val_size == buf + encoded_len); | |||
| table_.Insert(buf); | |||
| } | |||
| ``` | |||
| 从 memtable 获取插入的数据时,需要读出 key, value 之间的 ttl 进行检查( line15 ) | |||
| ```c++ | |||
| bool MemTable::Get(const LookupKey& key, std::string* value, Status* s) { | |||
| Slice memkey = key.memtable_key(); | |||
| Table::Iterator iter(&table_); | |||
| iter.Seek(memkey.data()); | |||
| while(iter.Valid()) { | |||
| const char* entry = iter.key(); | |||
| uint32_t key_length;//internal_key_size | |||
| const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); | |||
| if (comparator_.comparator.user_comparator()->Compare( | |||
| Slice(key_ptr, key_length - 8), key.user_key()) == 0) { | |||
| // Correct user key | |||
| const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); | |||
| switch (static_cast<ValueType>(tag & 0xff)) { | |||
| case kTypeValue: { | |||
| const uint64_t ttl = DecodeFixed64(key_ptr+key_length); | |||
| if(ttl<key.ttl()){ // data的ttl需要大于等于查找开始时的时间,否则查找直到下一个ttl有效的键值对 | |||
| iter.Next();// drop dead data | |||
| continue; | |||
| } | |||
| Slice v = GetLengthPrefixedSlice(key_ptr + key_length+8);// 指针再偏移ttl的长度 | |||
| value->assign(v.data(), v.size()); | |||
| return true; | |||
| } | |||
| case kTypeDeletion: | |||
| *s = Status::NotFound(Slice()); | |||
| return true; | |||
| } | |||
| } | |||
| else{ | |||
| break;// 当 key 不一致的时候返回 false | |||
| } | |||
| } | |||
| return false; | |||
| } | |||
| ``` | |||
| 在开始查找时,将当前的时间写入 LookupKey,如果查找到的数据 ttl 超过当前时间,那么就会抛弃该条数据。 | |||
|  | |||
| 通过 blockbuilder 向 sstable 插入数据时(新建 level0/1/2)时使用 add 函数,需要将 ttl 通过PutVarint64 编码成 `Varint64` 形式,放入 key 与 value 之间 | |||
| ```c++ | |||
| void BlockBuilder::Add(const Slice& key, uint64_t ttl, const Slice& value) { | |||
| ··· | |||
| ··· | |||
| // Add "<shared><non_shared><value_size>" to buffer_ | |||
| PutVarint32(&buffer_, shared); | |||
| PutVarint32(&buffer_, non_shared); | |||
| PutVarint32(&buffer_, value.size()); | |||
| // Add string delta to buffer_ followed by value | |||
| buffer_.append(key.data() + shared, non_shared); | |||
| PutVarint64(&buffer_, ttl);//加入ttl | |||
| buffer_.append(value.data(), value.size()); | |||
| // Update state | |||
| last_key_.resize(shared); | |||
| last_key_.append(key.data() + shared, non_shared); | |||
| assert(Slice(last_key_) == key); | |||
| counter_++; | |||
| } | |||
| ``` | |||
| 通过 TableBuilder 将合并后的数据插入新的 sstable,使用 add 函数 | |||
|  | |||
| ```c++ | |||
| void TableBuilder::Add(const Slice& key, uint64_t ttl, const Slice& value) { | |||
| time_t now = time(nullptr); | |||
| if(ttl < static_cast<uint64_t>(now))return; // 再次检查,是否超时(理论上在上层DoCompactionWork时已经检查过一次,都是为了保障正确性,冗余的测试并不会造成很大的性能瓶颈) | |||
| ··· | |||
| ··· | |||
| if (r->filter_block != nullptr) { | |||
| r->filter_block->AddKey(key); | |||
| } | |||
| r->last_key.assign(key.data(), key.size()); | |||
| r->num_entries++; | |||
| r->data_block.Add(key, ttl, value); //加入block时仍旧需要使用 BlockBuilder::Add | |||
| const size_t estimated_block_size = r->data_block.CurrentSizeEstimate(); | |||
| if (estimated_block_size >= r->options.block_size) { | |||
| Flush(); | |||
| } | |||
| } | |||
| ``` | |||
| 在 DoCompactionWork 中,合并是会检查数据 ttl 是否到期,如果到期则会丢弃。 | |||
|  | |||
| #### 第二版设计 | |||
| ##### 原先的Put | |||
| ```c++ | |||
| // Convenience methods | |||
| Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) { | |||
| return DB::Put(o, key, val); | |||
| } | |||
| // 加入ttl功能后 | |||
| Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val,uint64_t ttl) { | |||
| return DB::Put(o, key, val,ttl); | |||
| } | |||
| ``` | |||
| ##### 老版本的 `DB::Put` 方法仅接受键和值,并将值直接存入数据库。 | |||
| ```c++ | |||
| Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) { | |||
| WriteBatch batch; | |||
| batch.Put(key, value); | |||
| return Write(opt, &batch); | |||
| } | |||
| ``` | |||
| ##### 新版本增加了一个可选参数 `ttl`(过期时间),允许用户指定存储的值的生存时间。 | |||
| ```c++ | |||
| Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) { | |||
| WriteBatch batch; | |||
| int len = value.size() + sizeof(uint64_t); | |||
| char* new_data = new char[len]; | |||
| time_t now = time(nullptr); // 获取当前时间,单位为秒 | |||
| uint64_t ttl = INT64_MAX; // 设置默认的 TTL 为最大值(即永不过期) | |||
| memcpy(new_data, value.data(), value.size()); // 将实际的值复制到 new_data 中 | |||
| memcpy(new_data + len - sizeof(uint64_t), (char*)(&ttl), sizeof(uint64_t)); // 将 TTL 复制到 new_data 的末尾 | |||
| Slice newValue = Slice(new_data, len); // 创建一个新的 Slice 对象 | |||
| batch.Put(key, newValue); // 将键值对放入 WriteBatch 中 | |||
| return Write(opt, &batch); // 写入数据库 | |||
| } | |||
| Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value, uint64_t ttl) { | |||
| WriteBatch batch; | |||
| int len = value.size() + sizeof(uint64_t); | |||
| char* new_data = new char[len]; | |||
| time_t now = time(nullptr); // 获取当前时间,单位为秒 | |||
| ttl += static_cast<uint64_t>(now); // 将当前时间加上 TTL,计算过期时间 | |||
| memcpy(new_data, value.data(), value.size()); // 将实际的值复制到 new_data 中 | |||
| memcpy(new_data + len - sizeof(uint64_t), (char*)(&ttl), sizeof(uint64_t)); // 将 TTL 复制到 new_data 的末尾 | |||
| Slice newValue = Slice(new_data, len); // 创建一个新的 Slice 对象 | |||
| batch.Put(key, newValue); // 将键值对放入 WriteBatch 中 | |||
| delete []new_data; // 释放分配的内存,防止内存泄漏 | |||
| return Write(opt, &batch); // 写入数据库 | |||
| } | |||
| ``` | |||
| ##### 合并sstable内的数据 | |||
| ```c++ | |||
| Status DBImpl::DoCompactionWork(CompactionState* compact) { | |||
| ··· | |||
| ··· | |||
| Iterator* input = versions_->MakeInputIterator(compact->compaction); | |||
| // Release mutex while we're actually doing the compaction work | |||
| mutex_.Unlock(); | |||
| input->SeekToFirst(); | |||
| Status status; | |||
| ParsedInternalKey ikey; | |||
| std::string current_user_key; | |||
| bool has_current_user_key = false; | |||
| SequenceNumber last_sequence_for_key = kMaxSequenceNumber; | |||
| while (input->Valid() && !shutting_down_.load(std::memory_order_acquire)) { | |||
| auto x=input->value(); // 获取键值对 value | |||
| uint64_t ttl=*(uint64_t*)(x.data()+x.size()-sizeof(uint64_t));// 将 TTL 从 new_data 的末尾取出 | |||
| time_t now = time(nullptr); // 获得当前时间 | |||
| // 如果 TTL 超过当前时间,说明数据已经过期 | |||
| if(ttl < static_cast<uint64_t>(now)){ | |||
| Log(options_.info_log, "delete record for ttl"); | |||
| input->Next(); // 将 input 指向下一个键值对 | |||
| continue; | |||
| } | |||
| // Prioritize immutable compaction work | |||
| if (has_imm_.load(std::memory_order_relaxed)) { | |||
| const uint64_t imm_start = env_->NowMicros(); | |||
| mutex_.Lock(); | |||
| if (imm_ != nullptr) { | |||
| CompactMemTable(); | |||
| // Wake up MakeRoomForWrite() if necessary. | |||
| background_work_finished_signal_.SignalAll(); | |||
| } | |||
| mutex_.Unlock(); | |||
| imm_micros += (env_->NowMicros() - imm_start); | |||
| } | |||
| ··· | |||
| ··· | |||
| } | |||
| ``` | |||
| ##### 用于处理从sstable中读取的键值对 | |||
| ```c++ | |||
| static void SaveValue(void* arg, const Slice& ikey, const Slice& v) { | |||
| Saver* s = reinterpret_cast<Saver*>(arg); | |||
| ParsedInternalKey parsed_key; | |||
| if (!ParseInternalKey(ikey, &parsed_key)) { | |||
| s->state = kCorrupt; | |||
| } else { | |||
| if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { | |||
| // kTypeValue 对应被插入的数据 | |||
| if(parsed_key.type == kTypeValue){ | |||
| time_t now = time(nullptr); | |||
| uint64_t ttl=*(uint64_t*)(v.data()+v.size()-sizeof(uint64_t)); // 将 TTL 从 new_data 的末尾取出 | |||
| if(ttl < static_cast<uint64_t>(now))return; // 如果 TTL 超过当前时间,说明数据已经过期,直接返回 | |||
| } | |||
| s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted; | |||
| if (s->state == kFound) { | |||
| s->value->assign(v.data(), v.size()-sizeof(uint64_t)); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| ``` | |||
| ##### 读取memtable内的数据 | |||
| ```c++ | |||
| bool MemTable::Get(const LookupKey& key, std::string* value, Status* s) { | |||
| Slice memkey = key.memtable_key(); | |||
| Table::Iterator iter(&table_); | |||
| iter.Seek(memkey.data()); | |||
| while (iter.Valid()) { | |||
| const char* entry = iter.key(); | |||
| uint32_t key_length; | |||
| const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); | |||
| if (comparator_.comparator.user_comparator()->Compare( | |||
| Slice(key_ptr, key_length - 8), key.user_key()) == 0) { | |||
| // Correct user key | |||
| const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); | |||
| switch (static_cast<ValueType>(tag & 0xff)) { | |||
| // kTypeValue 对应被插入的数据 | |||
| case kTypeValue: { | |||
| Slice v = GetLengthPrefixedSlice(key_ptr + key_length); | |||
| uint64_t ttl=*(uint64_t*)(v.data()+v.size()-sizeof(uint64_t)); // 将 TTL 从 new_data 的末尾取出 | |||
| time_t now = time(nullptr); | |||
| // 如果 TTL 超过当前时间,说明数据已经过期 | |||
| if(ttl < static_cast<uint64_t>(now)){ | |||
| iter.Next(); // 将 iter 指向下一个键值对 | |||
| continue; | |||
| } | |||
| value->assign(v.data(), v.size()-sizeof(uint64_t)); | |||
| return true; | |||
| } | |||
| case kTypeDeletion: | |||
| *s = Status::NotFound(Slice()); | |||
| return true; | |||
| } | |||
| } | |||
| else break; | |||
| } | |||
| return false; | |||
| } | |||
| ``` | |||
| ##### 测试 | |||
| ```c++ | |||
| #include "gtest/gtest.h" | |||
| #include "leveldb/env.h" | |||
| #include "leveldb/db.h" | |||
| using namespace leveldb; | |||
| constexpr int value_size = 2048; | |||
| constexpr int data_size = 128 << 20; | |||
| Status OpenDB(std::string dbName, DB **db) { | |||
| Options options; | |||
| options.create_if_missing = true; | |||
| return DB::Open(options, dbName, db); | |||
| } | |||
| void InsertData(DB *db, uint64_t ttl/* second */) { | |||
| WriteOptions writeOptions; | |||
| int key_num = data_size / value_size; | |||
| srand(0); | |||
| for (int i = 0; i < key_num; i++) { | |||
| int key_ = rand() % key_num+1; | |||
| std::string key = std::to_string(key_); | |||
| std::string value(value_size, 'a'); | |||
| db->Put(writeOptions, key, value, ttl); | |||
| } | |||
| } | |||
| void GetData(DB *db, int size = (1 << 30)) { | |||
| ReadOptions readOptions; | |||
| int key_num = data_size / value_size; | |||
| // 点查 | |||
| srand(0); | |||
| for (int i = 0; i < 100; i++) { | |||
| int key_ = rand() % key_num+1; | |||
| std::string key = std::to_string(key_); | |||
| std::string value; | |||
| db->Get(readOptions, key, &value); | |||
| } | |||
| } | |||
| TEST(TestTTL, ReadTTL) { | |||
| DB *db; | |||
| if(OpenDB("testdb", &db).ok() == false) { | |||
| std::cerr << "open db failed" << std::endl; | |||
| abort(); | |||
| } | |||
| uint64_t ttl = 20; | |||
| InsertData(db, ttl); | |||
| ReadOptions readOptions; | |||
| Status status; | |||
| int key_num = data_size / value_size; | |||
| srand(0); | |||
| for (int i = 0; i < 100; i++) { | |||
| int key_ = rand() % key_num+1; | |||
| std::string key = std::to_string(key_); | |||
| std::string value; | |||
| status = db->Get(readOptions, key, &value); | |||
| ASSERT_TRUE(status.ok()); | |||
| } | |||
| Env::Default()->SleepForMicroseconds((ttl+1) * 1000000); | |||
| for (int i = 0; i < 100; i++) { | |||
| int key_ = rand() % key_num+1; | |||
| std::string key = std::to_string(key_); | |||
| std::string value; | |||
| status = db->Get(readOptions, key, &value); | |||
| ASSERT_FALSE(status.ok()); | |||
| } | |||
| delete db; | |||
| } | |||
| TEST(TestTTL, CompactionTTL) { | |||
| DB *db; | |||
| if(OpenDB("testdb", &db).ok() == false) { | |||
| std::cerr << "open db failed" << std::endl; | |||
| abort(); | |||
| } | |||
| uint64_t ttl = 20; | |||
| InsertData(db, ttl); | |||
| leveldb::Range ranges[1]; | |||
| ranges[0] = leveldb::Range("-", "A"); | |||
| uint64_t sizes[1]; | |||
| db->GetApproximateSizes(ranges, 1, sizes); | |||
| ASSERT_GT(sizes[0], 0); | |||
| Env::Default()->SleepForMicroseconds((ttl+1) * 1000000); | |||
| db->CompactRange(nullptr, nullptr); | |||
| leveldb::Range ranges_1[1]; | |||
| ranges[0] = leveldb::Range("-", "A"); | |||
| uint64_t sizes_1[1]; | |||
| db->GetApproximateSizes(ranges_1, 1, sizes_1); | |||
| ASSERT_EQ(sizes_1[0], 0); | |||
| delete db; | |||
| } | |||
| TEST(TestTTL, OurTTL) { | |||
| DB *db; | |||
| WriteOptions writeOptions; | |||
| ReadOptions readOptions; | |||
| if(OpenDB("testdb_for_XOY", &db).ok() == false) { | |||
| std::cerr << "open db failed" << std::endl; | |||
| abort(); | |||
| } | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value = std::to_string(i); | |||
| db->Put(writeOptions, key, value); | |||
| } | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value = std::to_string(i*2); | |||
| db->Put(writeOptions, key, value, 30); | |||
| } | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value = std::to_string(i*3); | |||
| db->Put(writeOptions, key, value, 15); | |||
| } | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value; | |||
| Status status = db->Get(readOptions, key, &value); | |||
| ASSERT_TRUE(status.ok()); | |||
| ASSERT_TRUE(value==std::to_string(i*3)); | |||
| } | |||
| Env::Default()->SleepForMicroseconds((15+1) * 1000000); | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value; | |||
| Status status = db->Get(readOptions, key, &value); | |||
| ASSERT_TRUE(status.ok()); | |||
| ASSERT_TRUE(value==std::to_string(i*2)); | |||
| } | |||
| Env::Default()->SleepForMicroseconds((15+1) * 1000000); | |||
| for (int i = 0; i < 10000; i++) { | |||
| std::string key = std::to_string(i); | |||
| std::string value; | |||
| Status status = db->Get(readOptions, key, &value); | |||
| ASSERT_TRUE(status.ok()); | |||
| ASSERT_TRUE(value==std::to_string(i)); | |||
| } | |||
| delete db; | |||
| } | |||
| int main(int argc, char** argv) { | |||
| // All tests currently run with the same read-only file limits. | |||
| testing::InitGoogleTest(&argc, argv); | |||
| return RUN_ALL_TESTS(); | |||
| } | |||
| ``` | |||