// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "leveldb/env.h" #include "leveldb/slice.h" #include "port/port.h" #include "util/logging.h" #include "util/mutexlock.h" #include "util/posix_logger.h" #include "util/env_posix_test_helper.h" namespace leveldb { namespace { static int open_read_only_file_limit = -1; static int mmap_limit = -1; static const size_t kBufSize = 65536; static Status PosixError(const std::string& context, int err_number) { if (err_number == ENOENT) { return Status::NotFound(context, strerror(err_number)); } else { return Status::IOError(context, strerror(err_number)); } } // Helper class to limit resource usage to avoid exhaustion. // Currently used to limit read-only file descriptors and mmap file usage // so that we do not end up running out of file descriptors, virtual memory, // or running into kernel performance problems for very large databases. class Limiter { public: // Limit maximum number of resources to |n|. Limiter(intptr_t n) { SetAllowed(n); } // If another resource is available, acquire it and return true. // Else return false. bool Acquire() { if (GetAllowed() <= 0) { return false; } MutexLock l(&mu_); intptr_t x = GetAllowed(); if (x <= 0) { return false; } else { SetAllowed(x - 1); return true; } } // Release a resource acquired by a previous call to Acquire() that returned // true. void Release() { MutexLock l(&mu_); SetAllowed(GetAllowed() + 1); } private: port::Mutex mu_; port::AtomicPointer allowed_; intptr_t GetAllowed() const { return reinterpret_cast(allowed_.Acquire_Load()); } // REQUIRES: mu_ must be held void SetAllowed(intptr_t v) { allowed_.Release_Store(reinterpret_cast(v)); } Limiter(const Limiter&); void operator=(const Limiter&); }; class PosixSequentialFile: public SequentialFile { private: std::string filename_; int fd_; public: PosixSequentialFile(const std::string& fname, int fd) : filename_(fname), fd_(fd) {} virtual ~PosixSequentialFile() { close(fd_); } virtual Status Read(size_t n, Slice* result, char* scratch) { Status s; while (true) { ssize_t r = read(fd_, scratch, n); if (r < 0) { if (errno == EINTR) { continue; // Retry } s = PosixError(filename_, errno); break; } *result = Slice(scratch, r); break; } return s; } virtual Status Skip(uint64_t n) { if (lseek(fd_, n, SEEK_CUR) == static_cast(-1)) { return PosixError(filename_, errno); } return Status::OK(); } }; // pread() based random-access class PosixRandomAccessFile: public RandomAccessFile { private: std::string filename_; bool temporary_fd_; // If true, fd_ is -1 and we open on every read. int fd_; Limiter* limiter_; public: PosixRandomAccessFile(const std::string& fname, int fd, Limiter* limiter) : filename_(fname), fd_(fd), limiter_(limiter) { temporary_fd_ = !limiter->Acquire(); if (temporary_fd_) { // Open file on every access. close(fd_); fd_ = -1; } } virtual ~PosixRandomAccessFile() { if (!temporary_fd_) { close(fd_); limiter_->Release(); } } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { int fd = fd_; if (temporary_fd_) { fd = open(filename_.c_str(), O_RDONLY); if (fd < 0) { return PosixError(filename_, errno); } } Status s; ssize_t r = pread(fd, scratch, n, static_cast(offset)); *result = Slice(scratch, (r < 0) ? 0 : r); if (r < 0) { // An error: return a non-ok status s = PosixError(filename_, errno); } if (temporary_fd_) { // Close the temporary file descriptor opened earlier. close(fd); } return s; } }; // mmap() based random-access class PosixMmapReadableFile: public RandomAccessFile { private: std::string filename_; void* mmapped_region_; size_t length_; Limiter* limiter_; public: // base[0,length-1] contains the mmapped contents of the file. PosixMmapReadableFile(const std::string& fname, void* base, size_t length, Limiter* limiter) : filename_(fname), mmapped_region_(base), length_(length), limiter_(limiter) { } virtual ~PosixMmapReadableFile() { munmap(mmapped_region_, length_); limiter_->Release(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; if (offset + n > length_) { *result = Slice(); s = PosixError(filename_, EINVAL); } else { *result = Slice(reinterpret_cast(mmapped_region_) + offset, n); } return s; } }; class PosixWritableFile : public WritableFile { private: // buf_[0, pos_-1] contains data to be written to fd_. std::string filename_; int fd_; char buf_[kBufSize]; size_t pos_; public: PosixWritableFile(const std::string& fname, int fd) : filename_(fname), fd_(fd), pos_(0) { } ~PosixWritableFile() { if (fd_ >= 0) { // Ignoring any potential errors FlushBuffered(); } } virtual Status Append(const Slice& data) { size_t n = data.size(); const char* p = data.data(); // Fit as much as possible into buffer. size_t copy = std::min(n, kBufSize - pos_); memcpy(buf_ + pos_, p, copy); p += copy; n -= copy; pos_ += copy; if (n == 0) { return Status::OK(); } // Can't fit in buffer, so need to do at least one write. Status s = FlushBuffered(); if (!s.ok()) { return s; } // Small writes go to buffer, large writes are written directly. if (n < kBufSize) { memcpy(buf_, p, n); pos_ = n; return Status::OK(); } return WriteRaw(p, n); } virtual Status Close() { Status result = FlushBuffered(); const int r = close(fd_); if (r < 0 && result.ok()) { result = PosixError(filename_, errno); } fd_ = -1; return result; } virtual Status Flush() { return FlushBuffered(); } Status SyncDirIfManifest() { const char* f = filename_.c_str(); const char* sep = strrchr(f, '/'); Slice basename; std::string dir; if (sep == NULL) { dir = "."; basename = f; } else { dir = std::string(f, sep - f); basename = sep + 1; } Status s; if (basename.starts_with("MANIFEST")) { int fd = open(dir.c_str(), O_RDONLY); if (fd < 0) { s = PosixError(dir, errno); } else { if (fsync(fd) < 0) { s = PosixError(dir, errno); } close(fd); } } return s; } virtual Status Sync() { // Ensure new files referred to by the manifest are in the filesystem. Status s = SyncDirIfManifest(); if (!s.ok()) { return s; } s = FlushBuffered(); if (s.ok()) { if (fdatasync(fd_) != 0) { s = PosixError(filename_, errno); } } return s; } private: Status FlushBuffered() { Status s = WriteRaw(buf_, pos_); pos_ = 0; return s; } Status WriteRaw(const char* p, size_t n) { while (n > 0) { ssize_t r = write(fd_, p, n); if (r < 0) { if (errno == EINTR) { continue; // Retry } return PosixError(filename_, errno); } p += r; n -= r; } return Status::OK(); } }; static int LockOrUnlock(int fd, bool lock) { errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file return fcntl(fd, F_SETLK, &f); } class PosixFileLock : public FileLock { public: int fd_; std::string name_; }; // Set of locked files. We keep a separate set instead of just // relying on fcntrl(F_SETLK) since fcntl(F_SETLK) does not provide // any protection against multiple uses from the same process. class PosixLockTable { private: port::Mutex mu_; std::set locked_files_; public: bool Insert(const std::string& fname) { MutexLock l(&mu_); return locked_files_.insert(fname).second; } void Remove(const std::string& fname) { MutexLock l(&mu_); locked_files_.erase(fname); } }; class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv() { char msg[] = "Destroying Env::Default()\n"; fwrite(msg, 1, sizeof(msg), stderr); abort(); } virtual Status NewSequentialFile(const std::string& fname, SequentialFile** result) { int fd = open(fname.c_str(), O_RDONLY); if (fd < 0) { *result = NULL; return PosixError(fname, errno); } else { *result = new PosixSequentialFile(fname, fd); return Status::OK(); } } virtual Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) { *result = NULL; Status s; int fd = open(fname.c_str(), O_RDONLY); if (fd < 0) { s = PosixError(fname, errno); } else if (mmap_limit_.Acquire()) { uint64_t size; s = GetFileSize(fname, &size); if (s.ok()) { void* base = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (base != MAP_FAILED) { *result = new PosixMmapReadableFile(fname, base, size, &mmap_limit_); } else { s = PosixError(fname, errno); } } close(fd); if (!s.ok()) { mmap_limit_.Release(); } } else { *result = new PosixRandomAccessFile(fname, fd, &fd_limit_); } return s; } virtual Status NewWritableFile(const std::string& fname, WritableFile** result) { Status s; int fd = open(fname.c_str(), O_TRUNC | O_WRONLY | O_CREAT, 0644); if (fd < 0) { *result = NULL; s = PosixError(fname, errno); } else { *result = new PosixWritableFile(fname, fd); } return s; } virtual Status NewAppendableFile(const std::string& fname, WritableFile** result) { Status s; int fd = open(fname.c_str(), O_APPEND | O_WRONLY | O_CREAT, 0644); if (fd < 0) { *result = NULL; s = PosixError(fname, errno); } else { *result = new PosixWritableFile(fname, fd); } return s; } virtual bool FileExists(const std::string& fname) { return access(fname.c_str(), F_OK) == 0; } virtual Status GetChildren(const std::string& dir, std::vector* result) { result->clear(); DIR* d = opendir(dir.c_str()); if (d == NULL) { return PosixError(dir, errno); } struct dirent* entry; while ((entry = readdir(d)) != NULL) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) { Status result; if (unlink(fname.c_str()) != 0) { result = PosixError(fname, errno); } return result; } virtual Status CreateDir(const std::string& name) { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = PosixError(name, errno); } return result; } virtual Status DeleteDir(const std::string& name) { Status result; if (rmdir(name.c_str()) != 0) { result = PosixError(name, errno); } return result; } virtual Status GetFileSize(const std::string& fname, uint64_t* size) { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = PosixError(fname, errno); } else { *size = sbuf.st_size; } return s; } virtual Status RenameFile(const std::string& src, const std::string& target) { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = PosixError(src, errno); } return result; } virtual Status LockFile(const std::string& fname, FileLock** lock) { *lock = NULL; Status result; int fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); if (fd < 0) { result = PosixError(fname, errno); } else if (!locks_.Insert(fname)) { close(fd); result = Status::IOError("lock " + fname, "already held by process"); } else if (LockOrUnlock(fd, true) == -1) { result = PosixError("lock " + fname, errno); close(fd); locks_.Remove(fname); } else { PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; my_lock->name_ = fname; *lock = my_lock; } return result; } virtual Status UnlockFile(FileLock* lock) { PosixFileLock* my_lock = reinterpret_cast(lock); Status result; if (LockOrUnlock(my_lock->fd_, false) == -1) { result = PosixError("unlock", errno); } locks_.Remove(my_lock->name_); close(my_lock->fd_); delete my_lock; return result; } virtual void Schedule(void (*function)(void*), void* arg); virtual void StartThread(void (*function)(void* arg), void* arg); virtual Status GetTestDirectory(std::string* result) { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } static uint64_t gettid() { pthread_t tid = pthread_self(); uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); return thread_id; } virtual Status NewLogger(const std::string& fname, Logger** result) { FILE* f = fopen(fname.c_str(), "w"); if (f == NULL) { *result = NULL; return PosixError(fname, errno); } else { *result = new PosixLogger(f, &PosixEnv::gettid); return Status::OK(); } } virtual uint64_t NowMicros() { struct timeval tv; gettimeofday(&tv, NULL); return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual void SleepForMicroseconds(int micros) { usleep(micros); } private: void PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); abort(); } } // BGThread() is the body of the background thread void BGThread(); static void* BGThreadWrapper(void* arg) { reinterpret_cast(arg)->BGThread(); return NULL; } pthread_mutex_t mu_; pthread_cond_t bgsignal_; pthread_t bgthread_; bool started_bgthread_; // Entry per Schedule() call struct BGItem { void* arg; void (*function)(void*); }; typedef std::deque BGQueue; BGQueue queue_; PosixLockTable locks_; Limiter mmap_limit_; Limiter fd_limit_; }; // Return the maximum number of concurrent mmaps. static int MaxMmaps() { if (mmap_limit >= 0) { return mmap_limit; } // Up to 1000 mmaps for 64-bit binaries; none for smaller pointer sizes. mmap_limit = sizeof(void*) >= 8 ? 1000 : 0; return mmap_limit; } // Return the maximum number of read-only files to keep open. static intptr_t MaxOpenFiles() { if (open_read_only_file_limit >= 0) { return open_read_only_file_limit; } struct rlimit rlim; if (getrlimit(RLIMIT_NOFILE, &rlim)) { // getrlimit failed, fallback to hard-coded default. open_read_only_file_limit = 50; } else if (rlim.rlim_cur == RLIM_INFINITY) { open_read_only_file_limit = std::numeric_limits::max(); } else { // Allow use of 20% of available file descriptors for read-only files. open_read_only_file_limit = rlim.rlim_cur / 5; } return open_read_only_file_limit; } PosixEnv::PosixEnv() : started_bgthread_(false), mmap_limit_(MaxMmaps()), fd_limit_(MaxOpenFiles()) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, NULL)); PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, NULL)); } void PosixEnv::Schedule(void (*function)(void*), void* arg) { PthreadCall("lock", pthread_mutex_lock(&mu_)); // Start background thread if necessary if (!started_bgthread_) { started_bgthread_ = true; PthreadCall( "create thread", pthread_create(&bgthread_, NULL, &PosixEnv::BGThreadWrapper, this)); } // If the queue is currently empty, the background thread may currently be // waiting. if (queue_.empty()) { PthreadCall("signal", pthread_cond_signal(&bgsignal_)); } // Add to priority queue queue_.push_back(BGItem()); queue_.back().function = function; queue_.back().arg = arg; PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void PosixEnv::BGThread() { while (true) { // Wait until there is an item that is ready to run PthreadCall("lock", pthread_mutex_lock(&mu_)); while (queue_.empty()) { PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_)); } void (*function)(void*) = queue_.front().function; void* arg = queue_.front().arg; queue_.pop_front(); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); (*function)(arg); } } namespace { struct StartThreadState { void (*user_function)(void*); void* arg; }; } static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast(arg); state->user_function(state->arg); delete state; return NULL; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; PthreadCall("start thread", pthread_create(&t, NULL, &StartThreadWrapper, state)); } } // namespace static pthread_once_t once = PTHREAD_ONCE_INIT; static Env* default_env; static void InitDefaultEnv() { default_env = new PosixEnv; } void EnvPosixTestHelper::SetReadOnlyFDLimit(int limit) { assert(default_env == NULL); open_read_only_file_limit = limit; } void EnvPosixTestHelper::SetReadOnlyMMapLimit(int limit) { assert(default_env == NULL); mmap_limit = limit; } Env* Env::Default() { pthread_once(&once, InitDefaultEnv); return default_env; } } // namespace leveldb