小组成员:10215300402-朱维清 & 10222140408 谷杰
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 

893 rader
26 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <dirent.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <cerrno>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <queue>
#include <set>
#include <string>
#include <thread>
#include <type_traits>
#include <utility>
#include "leveldb/env.h"
#include "leveldb/slice.h"
#include "leveldb/status.h"
#include "port/port.h"
#include "port/thread_annotations.h"
#include "util/env_posix_test_helper.h"
#include "util/posix_logger.h"
namespace leveldb {
namespace {
// Set by EnvPosixTestHelper::SetReadOnlyMMapLimit() and MaxOpenFiles().
int g_open_read_only_file_limit = -1;
// Up to 1000 mmap regions for 64-bit binaries; none for 32-bit.
constexpr const int kDefaultMmapLimit = (sizeof(void*) >= 8) ? 1000 : 0;
// Can be set using EnvPosixTestHelper::SetReadOnlyMMapLimit().
int g_mmap_limit = kDefaultMmapLimit;
// Common flags defined for all posix open operations
#if defined(HAVE_O_CLOEXEC)
constexpr const int kOpenBaseFlags = O_CLOEXEC;
#else
constexpr const int kOpenBaseFlags = 0;
#endif // defined(HAVE_O_CLOEXEC)
constexpr const size_t kWritableFileBufferSize = 65536;
Status PosixError(const std::string& context, int error_number) {
if (error_number == ENOENT) {
return Status::NotFound(context, std::strerror(error_number));
} else {
return Status::IOError(context, std::strerror(error_number));
}
}
// Helper class to limit resource usage to avoid exhaustion.
// Currently used to limit read-only file descriptors and mmap file usage
// so that we do not run out of file descriptors or virtual memory, or run into
// kernel performance problems for very large databases.
class Limiter {
public:
// Limit maximum number of resources to |max_acquires|.
Limiter(int max_acquires) : acquires_allowed_(max_acquires) {}
Limiter(const Limiter&) = delete;
Limiter operator=(const Limiter&) = delete;
// If another resource is available, acquire it and return true.
// Else return false.
bool Acquire() {
int old_acquires_allowed =
acquires_allowed_.fetch_sub(1, std::memory_order_relaxed);
if (old_acquires_allowed > 0) return true;
acquires_allowed_.fetch_add(1, std::memory_order_relaxed);
return false;
}
// Release a resource acquired by a previous call to Acquire() that returned
// true.
void Release() { acquires_allowed_.fetch_add(1, std::memory_order_relaxed); }
private:
// The number of available resources.
//
// This is a counter and is not tied to the invariants of any other class, so
// it can be operated on safely using std::memory_order_relaxed.
std::atomic<int> acquires_allowed_;
};
// Implements sequential read access in a file using read().
//
// Instances of this class are thread-friendly but not thread-safe, as required
// by the SequentialFile API.
class PosixSequentialFile final : public SequentialFile {
public:
PosixSequentialFile(std::string filename, int fd)
: fd_(fd), filename_(filename) {}
~PosixSequentialFile() override { close(fd_); }
Status Read(size_t n, Slice* result, char* scratch) override {
Status status;
while (true) {
::ssize_t read_size = ::read(fd_, scratch, n);
if (read_size < 0) { // Read error.
if (errno == EINTR) {
continue; // Retry
}
status = PosixError(filename_, errno);
break;
}
*result = Slice(scratch, read_size);
break;
}
return status;
}
Status Skip(uint64_t n) override {
if (::lseek(fd_, n, SEEK_CUR) == static_cast<off_t>(-1)) {
return PosixError(filename_, errno);
}
return Status::OK();
}
private:
const int fd_;
const std::string filename_;
};
// Implements random read access in a file using pread().
//
// Instances of this class are thread-safe, as required by the RandomAccessFile
// API. Instances are immutable and Read() only calls thread-safe library
// functions.
class PosixRandomAccessFile final : public RandomAccessFile {
public:
// The new instance takes ownership of |fd|. |fd_limiter| must outlive this
// instance, and will be used to determine if .
PosixRandomAccessFile(std::string filename, int fd, Limiter* fd_limiter)
: has_permanent_fd_(fd_limiter->Acquire()),
fd_(has_permanent_fd_ ? fd : -1),
fd_limiter_(fd_limiter),
filename_(std::move(filename)) {
if (!has_permanent_fd_) {
assert(fd_ == -1);
::close(fd); // The file will be opened on every read.
}
}
~PosixRandomAccessFile() override {
if (has_permanent_fd_) {
assert(fd_ != -1);
::close(fd_);
fd_limiter_->Release();
}
}
Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const override {
int fd = fd_;
if (!has_permanent_fd_) {
fd = ::open(filename_.c_str(), O_RDONLY | kOpenBaseFlags);
if (fd < 0) {
return PosixError(filename_, errno);
}
}
assert(fd != -1);
Status status;
ssize_t read_size = ::pread(fd, scratch, n, static_cast<off_t>(offset));
*result = Slice(scratch, (read_size < 0) ? 0 : read_size);
if (read_size < 0) {
// An error: return a non-ok status.
status = PosixError(filename_, errno);
}
if (!has_permanent_fd_) {
// Close the temporary file descriptor opened earlier.
assert(fd != fd_);
::close(fd);
}
return status;
}
private:
const bool has_permanent_fd_; // If false, the file is opened on every read.
const int fd_; // -1 if has_permanent_fd_ is false.
Limiter* const fd_limiter_;
const std::string filename_;
};
// Implements random read access in a file using mmap().
//
// Instances of this class are thread-safe, as required by the RandomAccessFile
// API. Instances are immutable and Read() only calls thread-safe library
// functions.
class PosixMmapReadableFile final : public RandomAccessFile {
public:
// mmap_base[0, length-1] points to the memory-mapped contents of the file. It
// must be the result of a successful call to mmap(). This instances takes
// over the ownership of the region.
//
// |mmap_limiter| must outlive this instance. The caller must have already
// aquired the right to use one mmap region, which will be released when this
// instance is destroyed.
PosixMmapReadableFile(std::string filename, char* mmap_base, size_t length,
Limiter* mmap_limiter)
: mmap_base_(mmap_base),
length_(length),
mmap_limiter_(mmap_limiter),
filename_(std::move(filename)) {}
~PosixMmapReadableFile() override {
::munmap(static_cast<void*>(mmap_base_), length_);
mmap_limiter_->Release();
}
Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const override {
if (offset + n > length_) {
*result = Slice();
return PosixError(filename_, EINVAL);
}
*result = Slice(mmap_base_ + offset, n);
return Status::OK();
}
private:
char* const mmap_base_;
const size_t length_;
Limiter* const mmap_limiter_;
const std::string filename_;
};
class PosixWritableFile final : public WritableFile {
public:
PosixWritableFile(std::string filename, int fd)
: pos_(0),
fd_(fd),
is_manifest_(IsManifest(filename)),
filename_(std::move(filename)),
dirname_(Dirname(filename_)) {}
~PosixWritableFile() override {
if (fd_ >= 0) {
// Ignoring any potential errors
Close();
}
}
Status Append(const Slice& data) override {
size_t write_size = data.size();
const char* write_data = data.data();
// Fit as much as possible into buffer.
size_t copy_size = std::min(write_size, kWritableFileBufferSize - pos_);
std::memcpy(buf_ + pos_, write_data, copy_size);
write_data += copy_size;
write_size -= copy_size;
pos_ += copy_size;
if (write_size == 0) {
return Status::OK();
}
// Can't fit in buffer, so need to do at least one write.
Status status = FlushBuffer();
if (!status.ok()) {
return status;
}
// Small writes go to buffer, large writes are written directly.
if (write_size < kWritableFileBufferSize) {
std::memcpy(buf_, write_data, write_size);
pos_ = write_size;
return Status::OK();
}
return WriteUnbuffered(write_data, write_size);
}
Status Close() override {
Status status = FlushBuffer();
const int close_result = ::close(fd_);
if (close_result < 0 && status.ok()) {
status = PosixError(filename_, errno);
}
fd_ = -1;
return status;
}
Status Flush() override { return FlushBuffer(); }
Status Sync() override {
// Ensure new files referred to by the manifest are in the filesystem.
//
// This needs to happen before the manifest file is flushed to disk, to
// avoid crashing in a state where the manifest refers to files that are not
// yet on disk.
Status status = SyncDirIfManifest();
if (!status.ok()) {
return status;
}
status = FlushBuffer();
if (!status.ok()) {
return status;
}
return SyncFd(fd_, filename_);
}
private:
Status FlushBuffer() {
Status status = WriteUnbuffered(buf_, pos_);
pos_ = 0;
return status;
}
Status WriteUnbuffered(const char* data, size_t size) {
while (size > 0) {
ssize_t write_result = ::write(fd_, data, size);
if (write_result < 0) {
if (errno == EINTR) {
continue; // Retry
}
return PosixError(filename_, errno);
}
data += write_result;
size -= write_result;
}
return Status::OK();
}
Status SyncDirIfManifest() {
Status status;
if (!is_manifest_) {
return status;
}
int fd = ::open(dirname_.c_str(), O_RDONLY | kOpenBaseFlags);
if (fd < 0) {
status = PosixError(dirname_, errno);
} else {
status = SyncFd(fd, dirname_);
::close(fd);
}
return status;
}
// Ensures that all the caches associated with the given file descriptor's
// data are flushed all the way to durable media, and can withstand power
// failures.
//
// The path argument is only used to populate the description string in the
// returned Status if an error occurs.
static Status SyncFd(int fd, const std::string& fd_path) {
#if HAVE_FULLFSYNC
// On macOS and iOS, fsync() doesn't guarantee durability past power
// failures. fcntl(F_FULLFSYNC) is required for that purpose. Some
// filesystems don't support fcntl(F_FULLFSYNC), and require a fallback to
// fsync().
if (::fcntl(fd, F_FULLFSYNC) == 0) {
return Status::OK();
}
#endif // HAVE_FULLFSYNC
#if HAVE_FDATASYNC
bool sync_success = ::fdatasync(fd) == 0;
#else
bool sync_success = ::fsync(fd) == 0;
#endif // HAVE_FDATASYNC
if (sync_success) {
return Status::OK();
}
return PosixError(fd_path, errno);
}
// Returns the directory name in a path pointing to a file.
//
// Returns "." if the path does not contain any directory separator.
static std::string Dirname(const std::string& filename) {
std::string::size_type separator_pos = filename.rfind('/');
if (separator_pos == std::string::npos) {
return std::string(".");
}
// The filename component should not contain a path separator. If it does,
// the splitting was done incorrectly.
assert(filename.find('/', separator_pos + 1) == std::string::npos);
return filename.substr(0, separator_pos);
}
// Extracts the file name from a path pointing to a file.
//
// The returned Slice points to |filename|'s data buffer, so it is only valid
// while |filename| is alive and unchanged.
static Slice Basename(const std::string& filename) {
std::string::size_type separator_pos = filename.rfind('/');
if (separator_pos == std::string::npos) {
return Slice(filename);
}
// The filename component should not contain a path separator. If it does,
// the splitting was done incorrectly.
assert(filename.find('/', separator_pos + 1) == std::string::npos);
return Slice(filename.data() + separator_pos + 1,
filename.length() - separator_pos - 1);
}
// True if the given file is a manifest file.
static bool IsManifest(const std::string& filename) {
return Basename(filename).starts_with("MANIFEST");
}
// buf_[0, pos_ - 1] contains data to be written to fd_.
char buf_[kWritableFileBufferSize];
size_t pos_;
int fd_;
const bool is_manifest_; // True if the file's name starts with MANIFEST.
const std::string filename_;
const std::string dirname_; // The directory of filename_.
};
int LockOrUnlock(int fd, bool lock) {
errno = 0;
struct ::flock file_lock_info;
std::memset(&file_lock_info, 0, sizeof(file_lock_info));
file_lock_info.l_type = (lock ? F_WRLCK : F_UNLCK);
file_lock_info.l_whence = SEEK_SET;
file_lock_info.l_start = 0;
file_lock_info.l_len = 0; // Lock/unlock entire file.
return ::fcntl(fd, F_SETLK, &file_lock_info);
}
// Instances are thread-safe because they are immutable.
class PosixFileLock : public FileLock {
public:
PosixFileLock(int fd, std::string filename)
: fd_(fd), filename_(std::move(filename)) {}
int fd() const { return fd_; }
const std::string& filename() const { return filename_; }
private:
const int fd_;
const std::string filename_;
};
// Tracks the files locked by PosixEnv::LockFile().
//
// We maintain a separate set instead of relying on fcntl(F_SETLK) because
// fcntl(F_SETLK) does not provide any protection against multiple uses from the
// same process.
//
// Instances are thread-safe because all member data is guarded by a mutex.
class PosixLockTable {
public:
bool Insert(const std::string& fname) LOCKS_EXCLUDED(mu_) {
mu_.Lock();
bool succeeded = locked_files_.insert(fname).second;
mu_.Unlock();
return succeeded;
}
void Remove(const std::string& fname) LOCKS_EXCLUDED(mu_) {
mu_.Lock();
locked_files_.erase(fname);
mu_.Unlock();
}
private:
port::Mutex mu_;
std::set<std::string> locked_files_ GUARDED_BY(mu_);
};
class PosixEnv : public Env {
public:
PosixEnv();
~PosixEnv() override {
static const char msg[] =
"PosixEnv singleton destroyed. Unsupported behavior!\n";
std::fwrite(msg, 1, sizeof(msg), stderr);
std::abort();
}
Status NewSequentialFile(const std::string& filename,
SequentialFile** result) override {
int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags);
if (fd < 0) {
*result = nullptr;
return PosixError(filename, errno);
}
*result = new PosixSequentialFile(filename, fd);
return Status::OK();
}
Status NewRandomAccessFile(const std::string& filename,
RandomAccessFile** result) override {
*result = nullptr;
int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags);
if (fd < 0) {
return PosixError(filename, errno);
}
if (!mmap_limiter_.Acquire()) {
*result = new PosixRandomAccessFile(filename, fd, &fd_limiter_);
return Status::OK();
}
uint64_t file_size;
Status status = GetFileSize(filename, &file_size);
if (status.ok()) {
void* mmap_base =
::mmap(/*addr=*/nullptr, file_size, PROT_READ, MAP_SHARED, fd, 0);
if (mmap_base != MAP_FAILED) {
*result = new PosixMmapReadableFile(filename,
reinterpret_cast<char*>(mmap_base),
file_size, &mmap_limiter_);
} else {
status = PosixError(filename, errno);
}
}
::close(fd);
if (!status.ok()) {
mmap_limiter_.Release();
}
return status;
}
Status NewWritableFile(const std::string& filename,
WritableFile** result) override {
int fd = ::open(filename.c_str(),
O_TRUNC | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644);
if (fd < 0) {
*result = nullptr;
return PosixError(filename, errno);
}
*result = new PosixWritableFile(filename, fd);
return Status::OK();
}
Status NewAppendableFile(const std::string& filename,
WritableFile** result) override {
int fd = ::open(filename.c_str(),
O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644);
if (fd < 0) {
*result = nullptr;
return PosixError(filename, errno);
}
*result = new PosixWritableFile(filename, fd);
return Status::OK();
}
bool FileExists(const std::string& filename) override {
return ::access(filename.c_str(), F_OK) == 0;
}
Status GetChildren(const std::string& directory_path,
std::vector<std::string>* result) override {
result->clear();
::DIR* dir = ::opendir(directory_path.c_str());
if (dir == nullptr) {
return PosixError(directory_path, errno);
}
struct ::dirent* entry;
while ((entry = ::readdir(dir)) != nullptr) {
result->emplace_back(entry->d_name);
}
::closedir(dir);
return Status::OK();
}
Status RemoveFile(const std::string& filename) override {
if (::unlink(filename.c_str()) != 0) {
return PosixError(filename, errno);
}
return Status::OK();
}
Status CreateDir(const std::string& dirname) override {
if (::mkdir(dirname.c_str(), 0755) != 0) {
return PosixError(dirname, errno);
}
return Status::OK();
}
Status RemoveDir(const std::string& dirname) override {
if (::rmdir(dirname.c_str()) != 0) {
return PosixError(dirname, errno);
}
return Status::OK();
}
Status GetFileSize(const std::string& filename, uint64_t* size) override {
struct ::stat file_stat;
if (::stat(filename.c_str(), &file_stat) != 0) {
*size = 0;
return PosixError(filename, errno);
}
*size = file_stat.st_size;
return Status::OK();
}
Status RenameFile(const std::string& from, const std::string& to) override {
if (std::rename(from.c_str(), to.c_str()) != 0) {
return PosixError(from, errno);
}
return Status::OK();
}
Status LockFile(const std::string& filename, FileLock** lock) override {
*lock = nullptr;
int fd = ::open(filename.c_str(), O_RDWR | O_CREAT | kOpenBaseFlags, 0644);
if (fd < 0) {
return PosixError(filename, errno);
}
if (!locks_.Insert(filename)) {
::close(fd);
return Status::IOError("lock " + filename, "already held by process");
}
if (LockOrUnlock(fd, true) == -1) {
int lock_errno = errno;
::close(fd);
locks_.Remove(filename);
return PosixError("lock " + filename, lock_errno);
}
*lock = new PosixFileLock(fd, filename);
return Status::OK();
}
Status UnlockFile(FileLock* lock) override {
PosixFileLock* posix_file_lock = static_cast<PosixFileLock*>(lock);
if (LockOrUnlock(posix_file_lock->fd(), false) == -1) {
return PosixError("unlock " + posix_file_lock->filename(), errno);
}
locks_.Remove(posix_file_lock->filename());
::close(posix_file_lock->fd());
delete posix_file_lock;
return Status::OK();
}
void Schedule(void (*background_work_function)(void* background_work_arg),
void* background_work_arg) override;
void StartThread(void (*thread_main)(void* thread_main_arg),
void* thread_main_arg) override {
std::thread new_thread(thread_main, thread_main_arg);
new_thread.detach();
}
Status GetTestDirectory(std::string* result) override {
const char* env = std::getenv("TEST_TMPDIR");
if (env && env[0] != '\0') {
*result = env;
} else {
char buf[100];
std::snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d",
static_cast<int>(::geteuid()));
*result = buf;
}
// The CreateDir status is ignored because the directory may already exist.
CreateDir(*result);
return Status::OK();
}
Status NewLogger(const std::string& filename, Logger** result) override {
int fd = ::open(filename.c_str(),
O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644);
if (fd < 0) {
*result = nullptr;
return PosixError(filename, errno);
}
std::FILE* fp = ::fdopen(fd, "w");
if (fp == nullptr) {
::close(fd);
*result = nullptr;
return PosixError(filename, errno);
} else {
*result = new PosixLogger(fp);
return Status::OK();
}
}
uint64_t NowMicros() override {
static constexpr uint64_t kUsecondsPerSecond = 1000000;
struct ::timeval tv;
::gettimeofday(&tv, nullptr);
return static_cast<uint64_t>(tv.tv_sec) * kUsecondsPerSecond + tv.tv_usec;
}
void SleepForMicroseconds(int micros) override {
std::this_thread::sleep_for(std::chrono::microseconds(micros));
}
private:
void BackgroundThreadMain();
static void BackgroundThreadEntryPoint(PosixEnv* env) {
env->BackgroundThreadMain();
}
// Stores the work item data in a Schedule() call.
//
// Instances are constructed on the thread calling Schedule() and used on the
// background thread.
//
// This structure is thread-safe beacuse it is immutable.
struct BackgroundWorkItem {
explicit BackgroundWorkItem(void (*function)(void* arg), void* arg)
: function(function), arg(arg) {}
void (*const function)(void*);
void* const arg;
};
port::Mutex background_work_mutex_;
port::CondVar background_work_cv_ GUARDED_BY(background_work_mutex_);
bool started_background_thread_ GUARDED_BY(background_work_mutex_);
std::queue<BackgroundWorkItem> background_work_queue_
GUARDED_BY(background_work_mutex_);
PosixLockTable locks_; // Thread-safe.
Limiter mmap_limiter_; // Thread-safe.
Limiter fd_limiter_; // Thread-safe.
};
// Return the maximum number of concurrent mmaps.
int MaxMmaps() { return g_mmap_limit; }
// Return the maximum number of read-only files to keep open.
int MaxOpenFiles() {
if (g_open_read_only_file_limit >= 0) {
return g_open_read_only_file_limit;
}
struct ::rlimit rlim;
if (::getrlimit(RLIMIT_NOFILE, &rlim)) {
// getrlimit failed, fallback to hard-coded default.
g_open_read_only_file_limit = 50;
} else if (rlim.rlim_cur == RLIM_INFINITY) {
g_open_read_only_file_limit = std::numeric_limits<int>::max();
} else {
// Allow use of 20% of available file descriptors for read-only files.
g_open_read_only_file_limit = rlim.rlim_cur / 5;
}
return g_open_read_only_file_limit;
}
} // namespace
PosixEnv::PosixEnv()
: background_work_cv_(&background_work_mutex_),
started_background_thread_(false),
mmap_limiter_(MaxMmaps()),
fd_limiter_(MaxOpenFiles()) {}
void PosixEnv::Schedule(
void (*background_work_function)(void* background_work_arg),
void* background_work_arg) {
background_work_mutex_.Lock();
// Start the background thread, if we haven't done so already.
if (!started_background_thread_) {
started_background_thread_ = true;
std::thread background_thread(PosixEnv::BackgroundThreadEntryPoint, this);
background_thread.detach();
}
// If the queue is empty, the background thread may be waiting for work.
if (background_work_queue_.empty()) {
background_work_cv_.Signal();
}
background_work_queue_.emplace(background_work_function, background_work_arg);
background_work_mutex_.Unlock();
}
void PosixEnv::BackgroundThreadMain() {
while (true) {
background_work_mutex_.Lock();
// Wait until there is work to be done.
while (background_work_queue_.empty()) {
background_work_cv_.Wait();
}
assert(!background_work_queue_.empty());
auto background_work_function = background_work_queue_.front().function;
void* background_work_arg = background_work_queue_.front().arg;
background_work_queue_.pop();
background_work_mutex_.Unlock();
background_work_function(background_work_arg);
}
}
namespace {
// Wraps an Env instance whose destructor is never created.
//
// Intended usage:
// using PlatformSingletonEnv = SingletonEnv<PlatformEnv>;
// void ConfigurePosixEnv(int param) {
// PlatformSingletonEnv::AssertEnvNotInitialized();
// // set global configuration flags.
// }
// Env* Env::Default() {
// static PlatformSingletonEnv default_env;
// return default_env.env();
// }
template <typename EnvType>
class SingletonEnv {
public:
SingletonEnv() {
#if !defined(NDEBUG)
env_initialized_.store(true, std::memory_order::memory_order_relaxed);
#endif // !defined(NDEBUG)
static_assert(sizeof(env_storage_) >= sizeof(EnvType),
"env_storage_ will not fit the Env");
static_assert(alignof(decltype(env_storage_)) >= alignof(EnvType),
"env_storage_ does not meet the Env's alignment needs");
new (&env_storage_) EnvType();
}
~SingletonEnv() = default;
SingletonEnv(const SingletonEnv&) = delete;
SingletonEnv& operator=(const SingletonEnv&) = delete;
Env* env() { return reinterpret_cast<Env*>(&env_storage_); }
static void AssertEnvNotInitialized() {
#if !defined(NDEBUG)
assert(!env_initialized_.load(std::memory_order::memory_order_relaxed));
#endif // !defined(NDEBUG)
}
private:
typename std::aligned_storage<sizeof(EnvType), alignof(EnvType)>::type
env_storage_;
#if !defined(NDEBUG)
static std::atomic<bool> env_initialized_;
#endif // !defined(NDEBUG)
};
#if !defined(NDEBUG)
template <typename EnvType>
std::atomic<bool> SingletonEnv<EnvType>::env_initialized_;
#endif // !defined(NDEBUG)
using PosixDefaultEnv = SingletonEnv<PosixEnv>;
} // namespace
void EnvPosixTestHelper::SetReadOnlyFDLimit(int limit) {
PosixDefaultEnv::AssertEnvNotInitialized();
g_open_read_only_file_limit = limit;
}
void EnvPosixTestHelper::SetReadOnlyMMapLimit(int limit) {
PosixDefaultEnv::AssertEnvNotInitialized();
g_mmap_limit = limit;
}
Env* Env::Default() {
static PosixDefaultEnv env_container;
return env_container.env();
}
} // namespace leveldb