小组成员:10215300402-朱维清 & 10222140408 谷杰
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

2158 строки
62 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "leveldb/db.h"
#include "leveldb/filter_policy.h"
#include "db/db_impl.h"
#include "db/filename.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "leveldb/cache.h"
#include "leveldb/env.h"
#include "leveldb/table.h"
#include "util/hash.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace leveldb {
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
namespace {
class AtomicCounter {
private:
port::Mutex mu_;
int count_;
public:
AtomicCounter() : count_(0) { }
void Increment() {
IncrementBy(1);
}
void IncrementBy(int count) {
MutexLock l(&mu_);
count_ += count;
}
int Read() {
MutexLock l(&mu_);
return count_;
}
void Reset() {
MutexLock l(&mu_);
count_ = 0;
}
};
void DelayMilliseconds(int millis) {
Env::Default()->SleepForMicroseconds(millis * 1000);
}
}
// Special Env used to delay background operations
class SpecialEnv : public EnvWrapper {
public:
// sstable/log Sync() calls are blocked while this pointer is non-NULL.
port::AtomicPointer delay_data_sync_;
// sstable/log Sync() calls return an error.
port::AtomicPointer data_sync_error_;
// Simulate no-space errors while this pointer is non-NULL.
port::AtomicPointer no_space_;
// Simulate non-writable file system while this pointer is non-NULL
port::AtomicPointer non_writable_;
// Force sync of manifest files to fail while this pointer is non-NULL
port::AtomicPointer manifest_sync_error_;
// Force write to manifest files to fail while this pointer is non-NULL
port::AtomicPointer manifest_write_error_;
bool count_random_reads_;
AtomicCounter random_read_counter_;
explicit SpecialEnv(Env* base) : EnvWrapper(base) {
delay_data_sync_.Release_Store(NULL);
data_sync_error_.Release_Store(NULL);
no_space_.Release_Store(NULL);
non_writable_.Release_Store(NULL);
count_random_reads_ = false;
manifest_sync_error_.Release_Store(NULL);
manifest_write_error_.Release_Store(NULL);
}
Status NewWritableFile(const std::string& f, WritableFile** r) {
class DataFile : public WritableFile {
private:
SpecialEnv* env_;
WritableFile* base_;
public:
DataFile(SpecialEnv* env, WritableFile* base)
: env_(env),
base_(base) {
}
~DataFile() { delete base_; }
Status Append(const Slice& data) {
if (env_->no_space_.Acquire_Load() != NULL) {
// Drop writes on the floor
return Status::OK();
} else {
return base_->Append(data);
}
}
Status Close() { return base_->Close(); }
Status Flush() { return base_->Flush(); }
Status Sync() {
if (env_->data_sync_error_.Acquire_Load() != NULL) {
return Status::IOError("simulated data sync error");
}
while (env_->delay_data_sync_.Acquire_Load() != NULL) {
DelayMilliseconds(100);
}
return base_->Sync();
}
};
class ManifestFile : public WritableFile {
private:
SpecialEnv* env_;
WritableFile* base_;
public:
ManifestFile(SpecialEnv* env, WritableFile* b) : env_(env), base_(b) { }
~ManifestFile() { delete base_; }
Status Append(const Slice& data) {
if (env_->manifest_write_error_.Acquire_Load() != NULL) {
return Status::IOError("simulated writer error");
} else {
return base_->Append(data);
}
}
Status Close() { return base_->Close(); }
Status Flush() { return base_->Flush(); }
Status Sync() {
if (env_->manifest_sync_error_.Acquire_Load() != NULL) {
return Status::IOError("simulated sync error");
} else {
return base_->Sync();
}
}
};
if (non_writable_.Acquire_Load() != NULL) {
return Status::IOError("simulated write error");
}
Status s = target()->NewWritableFile(f, r);
if (s.ok()) {
if (strstr(f.c_str(), ".ldb") != NULL ||
strstr(f.c_str(), ".log") != NULL) {
*r = new DataFile(this, *r);
} else if (strstr(f.c_str(), "MANIFEST") != NULL) {
*r = new ManifestFile(this, *r);
}
}
return s;
}
Status NewRandomAccessFile(const std::string& f, RandomAccessFile** r) {
class CountingFile : public RandomAccessFile {
private:
RandomAccessFile* target_;
AtomicCounter* counter_;
public:
CountingFile(RandomAccessFile* target, AtomicCounter* counter)
: target_(target), counter_(counter) {
}
virtual ~CountingFile() { delete target_; }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
counter_->Increment();
return target_->Read(offset, n, result, scratch);
}
};
Status s = target()->NewRandomAccessFile(f, r);
if (s.ok() && count_random_reads_) {
*r = new CountingFile(*r, &random_read_counter_);
}
return s;
}
};
class DBTest {
private:
const FilterPolicy* filter_policy_;
// Sequence of option configurations to try
enum OptionConfig {
kDefault,
kReuse,
kFilter,
kUncompressed,
kEnd
};
int option_config_;
public:
std::string dbname_;
SpecialEnv* env_;
DB* db_;
Options last_options_;
DBTest() : option_config_(kDefault),
env_(new SpecialEnv(Env::Default())) {
filter_policy_ = NewBloomFilterPolicy(10);
dbname_ = test::TmpDir() + "/db_test";
DestroyDB(dbname_, Options());
db_ = NULL;
Reopen();
}
~DBTest() {
delete db_;
DestroyDB(dbname_, Options());
delete env_;
delete filter_policy_;
}
// Switch to a fresh database with the next option configuration to
// test. Return false if there are no more configurations to test.
bool ChangeOptions() {
option_config_++;
if (option_config_ >= kEnd) {
return false;
} else {
DestroyAndReopen();
return true;
}
}
// Return the current option configuration.
Options CurrentOptions() {
Options options;
options.reuse_logs = false;
switch (option_config_) {
case kReuse:
options.reuse_logs = true;
break;
case kFilter:
options.filter_policy = filter_policy_;
break;
case kUncompressed:
options.compression = kNoCompression;
break;
default:
break;
}
return options;
}
DBImpl* dbfull() {
return reinterpret_cast<DBImpl*>(db_);
}
void Reopen(Options* options = NULL) {
ASSERT_OK(TryReopen(options));
}
void Close() {
delete db_;
db_ = NULL;
}
void DestroyAndReopen(Options* options = NULL) {
delete db_;
db_ = NULL;
DestroyDB(dbname_, Options());
ASSERT_OK(TryReopen(options));
}
Status TryReopen(Options* options) {
delete db_;
db_ = NULL;
Options opts;
if (options != NULL) {
opts = *options;
} else {
opts = CurrentOptions();
opts.create_if_missing = true;
}
last_options_ = opts;
return DB::Open(opts, dbname_, &db_);
}
Status Put(const std::string& k, const std::string& v) {
return db_->Put(WriteOptions(), k, v);
}
Status Delete(const std::string& k) {
return db_->Delete(WriteOptions(), k);
}
std::string Get(const std::string& k, const Snapshot* snapshot = NULL) {
ReadOptions options;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
// Return a string that contains all key,value pairs in order,
// formatted like "(k1->v1)(k2->v2)".
std::string Contents() {
std::vector<std::string> forward;
std::string result;
Iterator* iter = db_->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
std::string s = IterStatus(iter);
result.push_back('(');
result.append(s);
result.push_back(')');
forward.push_back(s);
}
// Check reverse iteration results are the reverse of forward results
size_t matched = 0;
for (iter->SeekToLast(); iter->Valid(); iter->Prev()) {
ASSERT_LT(matched, forward.size());
ASSERT_EQ(IterStatus(iter), forward[forward.size() - matched - 1]);
matched++;
}
ASSERT_EQ(matched, forward.size());
delete iter;
return result;
}
std::string AllEntriesFor(const Slice& user_key) {
Iterator* iter = dbfull()->TEST_NewInternalIterator();
InternalKey target(user_key, kMaxSequenceNumber, kTypeValue);
iter->Seek(target.Encode());
std::string result;
if (!iter->status().ok()) {
result = iter->status().ToString();
} else {
result = "[ ";
bool first = true;
while (iter->Valid()) {
ParsedInternalKey ikey;
if (!ParseInternalKey(iter->key(), &ikey)) {
result += "CORRUPTED";
} else {
if (last_options_.comparator->Compare(ikey.user_key, user_key) != 0) {
break;
}
if (!first) {
result += ", ";
}
first = false;
switch (ikey.type) {
case kTypeValue:
result += iter->value().ToString();
break;
case kTypeDeletion:
result += "DEL";
break;
}
}
iter->Next();
}
if (!first) {
result += " ";
}
result += "]";
}
delete iter;
return result;
}
int NumTableFilesAtLevel(int level) {
std::string property;
ASSERT_TRUE(
db_->GetProperty("leveldb.num-files-at-level" + NumberToString(level),
&property));
return atoi(property.c_str());
}
int TotalTableFiles() {
int result = 0;
for (int level = 0; level < config::kNumLevels; level++) {
result += NumTableFilesAtLevel(level);
}
return result;
}
// Return spread of files per level
std::string FilesPerLevel() {
std::string result;
int last_non_zero_offset = 0;
for (int level = 0; level < config::kNumLevels; level++) {
int f = NumTableFilesAtLevel(level);
char buf[100];
snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
result += buf;
if (f > 0) {
last_non_zero_offset = result.size();
}
}
result.resize(last_non_zero_offset);
return result;
}
int CountFiles() {
std::vector<std::string> files;
env_->GetChildren(dbname_, &files);
return static_cast<int>(files.size());
}
uint64_t Size(const Slice& start, const Slice& limit) {
Range r(start, limit);
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
return size;
}
void Compact(const Slice& start, const Slice& limit) {
db_->CompactRange(&start, &limit);
}
// Do n memtable compactions, each of which produces an sstable
// covering the range [small,large].
void MakeTables(int n, const std::string& small, const std::string& large) {
for (int i = 0; i < n; i++) {
Put(small, "begin");
Put(large, "end");
dbfull()->TEST_CompactMemTable();
}
}
// Prevent pushing of new sstables into deeper levels by adding
// tables that cover a specified range to all levels.
void FillLevels(const std::string& smallest, const std::string& largest) {
MakeTables(config::kNumLevels, smallest, largest);
}
void DumpFileCounts(const char* label) {
fprintf(stderr, "---\n%s:\n", label);
fprintf(stderr, "maxoverlap: %lld\n",
static_cast<long long>(
dbfull()->TEST_MaxNextLevelOverlappingBytes()));
for (int level = 0; level < config::kNumLevels; level++) {
int num = NumTableFilesAtLevel(level);
if (num > 0) {
fprintf(stderr, " level %3d : %d files\n", level, num);
}
}
}
std::string DumpSSTableList() {
std::string property;
db_->GetProperty("leveldb.sstables", &property);
return property;
}
std::string IterStatus(Iterator* iter) {
std::string result;
if (iter->Valid()) {
result = iter->key().ToString() + "->" + iter->value().ToString();
} else {
result = "(invalid)";
}
return result;
}
bool DeleteAnSSTFile() {
std::vector<std::string> filenames;
ASSERT_OK(env_->GetChildren(dbname_, &filenames));
uint64_t number;
FileType type;
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type) && type == kTableFile) {
ASSERT_OK(env_->DeleteFile(TableFileName(dbname_, number)));
return true;
}
}
return false;
}
// Returns number of files renamed.
int RenameLDBToSST() {
std::vector<std::string> filenames;
ASSERT_OK(env_->GetChildren(dbname_, &filenames));
uint64_t number;
FileType type;
int files_renamed = 0;
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type) && type == kTableFile) {
const std::string from = TableFileName(dbname_, number);
const std::string to = SSTTableFileName(dbname_, number);
ASSERT_OK(env_->RenameFile(from, to));
files_renamed++;
}
}
return files_renamed;
}
};
TEST(DBTest, Empty) {
do {
ASSERT_TRUE(db_ != NULL);
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, ReadWrite) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
} while (ChangeOptions());
}
TEST(DBTest, PutDeleteGet) {
do {
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
ASSERT_OK(db_->Delete(WriteOptions(), "foo"));
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
env_->delay_data_sync_.Release_Store(env_); // Block sync calls
Put("k1", std::string(100000, 'x')); // Fill memtable
Put("k2", std::string(100000, 'y')); // Trigger compaction
ASSERT_EQ("v1", Get("foo"));
env_->delay_data_sync_.Release_Store(NULL); // Release sync calls
} while (ChangeOptions());
}
TEST(DBTest, GetFromVersions) {
do {
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v1", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetMemUsage) {
do {
ASSERT_OK(Put("foo", "v1"));
std::string val;
ASSERT_TRUE(db_->GetProperty("leveldb.approximate-memory-usage", &val));
int mem_usage = atoi(val.c_str());
ASSERT_GT(mem_usage, 0);
ASSERT_LT(mem_usage, 5*1024*1024);
} while (ChangeOptions());
}
TEST(DBTest, GetSnapshot) {
do {
// Try with both a short key and a long key
for (int i = 0; i < 2; i++) {
std::string key = (i == 0) ? std::string("foo") : std::string(200, 'x');
ASSERT_OK(Put(key, "v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put(key, "v2"));
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
}
TEST(DBTest, GetLevel0Ordering) {
do {
// Check that we process level-0 files in correct order. The code
// below generates two level-0 files where the earlier one comes
// before the later one in the level-0 file list since the earlier
// one has a smaller "smallest" key.
ASSERT_OK(Put("bar", "b"));
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Put("foo", "v2"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetOrderedByLevels) {
do {
ASSERT_OK(Put("foo", "v1"));
Compact("a", "z");
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetPicksCorrectFile) {
do {
// Arrange to have multiple files in a non-level-0 level.
ASSERT_OK(Put("a", "va"));
Compact("a", "b");
ASSERT_OK(Put("x", "vx"));
Compact("x", "y");
ASSERT_OK(Put("f", "vf"));
Compact("f", "g");
ASSERT_EQ("va", Get("a"));
ASSERT_EQ("vf", Get("f"));
ASSERT_EQ("vx", Get("x"));
} while (ChangeOptions());
}
TEST(DBTest, GetEncountersEmptyLevel) {
do {
// Arrange for the following to happen:
// * sstable A in level 0
// * nothing in level 1
// * sstable B in level 2
// Then do enough Get() calls to arrange for an automatic compaction
// of sstable A. A bug would cause the compaction to be marked as
// occurring at level 1 (instead of the correct level 0).
// Step 1: First place sstables in levels 0 and 2
int compaction_count = 0;
while (NumTableFilesAtLevel(0) == 0 ||
NumTableFilesAtLevel(2) == 0) {
ASSERT_LE(compaction_count, 100) << "could not fill levels 0 and 2";
compaction_count++;
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
}
// Step 2: clear level 1 if necessary.
dbfull()->TEST_CompactRange(1, NULL, NULL);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 1);
// Step 3: read a bunch of times
for (int i = 0; i < 1000; i++) {
ASSERT_EQ("NOT_FOUND", Get("missing"));
}
// Step 4: Wait for compaction to finish
DelayMilliseconds(1000);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
} while (ChangeOptions());
}
TEST(DBTest, IterEmpty) {
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("foo");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterSingle) {
ASSERT_OK(Put("a", "va"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterMulti) {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("ax");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("z");
ASSERT_EQ(IterStatus(iter), "(invalid)");
// Switch from reverse to forward
iter->SeekToLast();
iter->Prev();
iter->Prev();
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Switch from forward to reverse
iter->SeekToFirst();
iter->Next();
iter->Next();
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Make sure iter stays at snapshot
ASSERT_OK(Put("a", "va2"));
ASSERT_OK(Put("a2", "va3"));
ASSERT_OK(Put("b", "vb2"));
ASSERT_OK(Put("c", "vc2"));
ASSERT_OK(Delete("b"));
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterSmallAndLargeMix) {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", std::string(100000, 'b')));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Put("d", std::string(100000, 'd')));
ASSERT_OK(Put("e", std::string(100000, 'e')));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterMultiWithDelete) {
do {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Delete("b"));
ASSERT_EQ("NOT_FOUND", Get("b"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->Seek("c");
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
delete iter;
} while (ChangeOptions());
}
TEST(DBTest, Recover) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v5", Get("baz"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
ASSERT_OK(Put("foo", "v4"));
ASSERT_EQ("v4", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v5", Get("baz"));
} while (ChangeOptions());
}
TEST(DBTest, RecoveryWithEmptyLog) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("foo", "v2"));
Reopen();
Reopen();
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
} while (ChangeOptions());
}
// Check that writes done during a memtable compaction are recovered
// if the database is shutdown during the memtable compaction.
TEST(DBTest, RecoverDuringMemtableCompaction) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 1000000;
Reopen(&options);
// Trigger a long memtable compaction and reopen the database during it
ASSERT_OK(Put("foo", "v1")); // Goes to 1st log file
ASSERT_OK(Put("big1", std::string(10000000, 'x'))); // Fills memtable
ASSERT_OK(Put("big2", std::string(1000, 'y'))); // Triggers compaction
ASSERT_OK(Put("bar", "v2")); // Goes to new log file
Reopen(&options);
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ(std::string(10000000, 'x'), Get("big1"));
ASSERT_EQ(std::string(1000, 'y'), Get("big2"));
} while (ChangeOptions());
}
static std::string Key(int i) {
char buf[100];
snprintf(buf, sizeof(buf), "key%06d", i);
return std::string(buf);
}
TEST(DBTest, MinorCompactionsHappen) {
Options options = CurrentOptions();
options.write_buffer_size = 10000;
Reopen(&options);
const int N = 500;
int starting_num_tables = TotalTableFiles();
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(1000, 'v')));
}
int ending_num_tables = TotalTableFiles();
ASSERT_GT(ending_num_tables, starting_num_tables);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
Reopen();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
}
TEST(DBTest, RecoverWithLargeLog) {
{
Options options = CurrentOptions();
Reopen(&options);
ASSERT_OK(Put("big1", std::string(200000, '1')));
ASSERT_OK(Put("big2", std::string(200000, '2')));
ASSERT_OK(Put("small3", std::string(10, '3')));
ASSERT_OK(Put("small4", std::string(10, '4')));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options = CurrentOptions();
options.write_buffer_size = 100000;
Reopen(&options);
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
ASSERT_EQ(std::string(200000, '1'), Get("big1"));
ASSERT_EQ(std::string(200000, '2'), Get("big2"));
ASSERT_EQ(std::string(10, '3'), Get("small3"));
ASSERT_EQ(std::string(10, '4'), Get("small4"));
ASSERT_GT(NumTableFilesAtLevel(0), 1);
}
TEST(DBTest, CompactionsGenerateMultipleFiles) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// Reopening moves updates to level-0
Reopen(&options);
dbfull()->TEST_CompactRange(0, NULL, NULL);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 1);
for (int i = 0; i < 80; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST(DBTest, RepeatedWritesToSameKey) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
// We must have at most one file per level except for level-0,
// which may have up to kL0_StopWritesTrigger files.
const int kMaxFiles = config::kNumLevels + config::kL0_StopWritesTrigger;
Random rnd(301);
std::string value = RandomString(&rnd, 2 * options.write_buffer_size);
for (int i = 0; i < 5 * kMaxFiles; i++) {
Put("key", value);
ASSERT_LE(TotalTableFiles(), kMaxFiles);
fprintf(stderr, "after %d: %d files\n", int(i+1), TotalTableFiles());
}
}
TEST(DBTest, SparseMerge) {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen(&options);
FillLevels("A", "Z");
// Suppose there is:
// small amount of data with prefix A
// large amount of data with prefix B
// small amount of data with prefix C
// and that recent updates have made small changes to all three prefixes.
// Check that we do not do a compaction that merges all of B in one shot.
const std::string value(1000, 'x');
Put("A", "va");
// Write approximately 100MB of "B" values
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
Put("C", "vc");
dbfull()->TEST_CompactMemTable();
dbfull()->TEST_CompactRange(0, NULL, NULL);
// Make sparse update
Put("A", "va2");
Put("B100", "bvalue2");
Put("C", "vc2");
dbfull()->TEST_CompactMemTable();
// Compactions should not cause us to create a situation where
// a file overlaps too much data at the next level.
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(0, NULL, NULL);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(1, NULL, NULL);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
DestroyAndReopen();
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
Reopen(&options);
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
const int N = 80;
static const int S1 = 100000;
static const int S2 = 105000; // Allow some expansion from metadata
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, S1)));
}
// 0 because GetApproximateSizes() does not account for memtable space
ASSERT_TRUE(Between(Size("", Key(50)), 0, 0));
if (options.reuse_logs) {
// Recovery will reuse memtable, and GetApproximateSizes() does not
// account for memtable usage;
Reopen(&options);
ASSERT_TRUE(Between(Size("", Key(50)), 0, 0));
continue;
}
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_TRUE(Between(Size("", Key(i)), S1*i, S2*i));
ASSERT_TRUE(Between(Size("", Key(i)+".suffix"), S1*(i+1), S2*(i+1)));
ASSERT_TRUE(Between(Size(Key(i), Key(i+10)), S1*10, S2*10));
}
ASSERT_TRUE(Between(Size("", Key(50)), S1*50, S2*50));
ASSERT_TRUE(Between(Size("", Key(50)+".suffix"), S1*50, S2*50));
std::string cstart_str = Key(compact_start);
std::string cend_str = Key(compact_start + 9);
Slice cstart = cstart_str;
Slice cend = cend_str;
dbfull()->TEST_CompactRange(0, &cstart, &cend);
}
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 0);
}
} while (ChangeOptions());
}
TEST(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen();
Random rnd(301);
std::string big1 = RandomString(&rnd, 100000);
ASSERT_OK(Put(Key(0), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(1), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(2), big1));
ASSERT_OK(Put(Key(3), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(4), big1));
ASSERT_OK(Put(Key(5), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(6), RandomString(&rnd, 300000)));
ASSERT_OK(Put(Key(7), RandomString(&rnd, 10000)));
if (options.reuse_logs) {
// Need to force a memtable compaction since recovery does not do so.
ASSERT_OK(dbfull()->TEST_CompactMemTable());
}
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
ASSERT_TRUE(Between(Size("", Key(0)), 0, 0));
ASSERT_TRUE(Between(Size("", Key(1)), 10000, 11000));
ASSERT_TRUE(Between(Size("", Key(2)), 20000, 21000));
ASSERT_TRUE(Between(Size("", Key(3)), 120000, 121000));
ASSERT_TRUE(Between(Size("", Key(4)), 130000, 131000));
ASSERT_TRUE(Between(Size("", Key(5)), 230000, 231000));
ASSERT_TRUE(Between(Size("", Key(6)), 240000, 241000));
ASSERT_TRUE(Between(Size("", Key(7)), 540000, 541000));
ASSERT_TRUE(Between(Size("", Key(8)), 550000, 560000));
ASSERT_TRUE(Between(Size(Key(3), Key(5)), 110000, 111000));
dbfull()->TEST_CompactRange(0, NULL, NULL);
}
} while (ChangeOptions());
}
TEST(DBTest, IteratorPinsRef) {
Put("foo", "hello");
// Get iterator that will yield the current contents of the DB.
Iterator* iter = db_->NewIterator(ReadOptions());
// Write to force compactions
Put("foo", "newvalue1");
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(100000, 'v'))); // 100K values
}
Put("foo", "newvalue2");
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("hello", iter->value().ToString());
iter->Next();
ASSERT_TRUE(!iter->Valid());
delete iter;
}
TEST(DBTest, Snapshot) {
do {
Put("foo", "v1");
const Snapshot* s1 = db_->GetSnapshot();
Put("foo", "v2");
const Snapshot* s2 = db_->GetSnapshot();
Put("foo", "v3");
const Snapshot* s3 = db_->GetSnapshot();
Put("foo", "v4");
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v3", Get("foo", s3));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s3);
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s2);
ASSERT_EQ("v4", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, HiddenValuesAreRemoved) {
do {
Random rnd(301);
FillLevels("a", "z");
std::string big = RandomString(&rnd, 50000);
Put("foo", big);
Put("pastfoo", "v");
const Snapshot* snapshot = db_->GetSnapshot();
Put("foo", "tiny");
Put("pastfoo2", "v2"); // Advance sequence number one more
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_GT(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(big, Get("foo", snapshot));
ASSERT_TRUE(Between(Size("", "pastfoo"), 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny, " + big + " ]");
Slice x("x");
dbfull()->TEST_CompactRange(0, NULL, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GE(NumTableFilesAtLevel(1), 1);
dbfull()->TEST_CompactRange(1, NULL, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_TRUE(Between(Size("", "pastfoo"), 0, 1000));
} while (ChangeOptions());
}
TEST(DBTest, DeletionMarkers1) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
const int last = config::kMaxMemCompactLevel;
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
Put("foo", "v2");
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable()); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
Slice z("z");
dbfull()->TEST_CompactRange(last-2, NULL, &z);
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
dbfull()->TEST_CompactRange(last-1, NULL, NULL);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]");
}
TEST(DBTest, DeletionMarkers2) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
const int last = config::kMaxMemCompactLevel;
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable()); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-2, NULL, NULL);
// DEL kept: "last" file overlaps
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-1, NULL, NULL);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
}
TEST(DBTest, OverlapInLevel0) {
do {
ASSERT_EQ(config::kMaxMemCompactLevel, 2) << "Fix test to match config";
// Fill levels 1 and 2 to disable the pushing of new memtables to levels > 0.
ASSERT_OK(Put("100", "v100"));
ASSERT_OK(Put("999", "v999"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Delete("100"));
ASSERT_OK(Delete("999"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("0,1,1", FilesPerLevel());
// Make files spanning the following ranges in level-0:
// files[0] 200 .. 900
// files[1] 300 .. 500
// Note that files are sorted by smallest key.
ASSERT_OK(Put("300", "v300"));
ASSERT_OK(Put("500", "v500"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Put("200", "v200"));
ASSERT_OK(Put("600", "v600"));
ASSERT_OK(Put("900", "v900"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("2,1,1", FilesPerLevel());
// Compact away the placeholder files we created initially
dbfull()->TEST_CompactRange(1, NULL, NULL);
dbfull()->TEST_CompactRange(2, NULL, NULL);
ASSERT_EQ("2", FilesPerLevel());
// Do a memtable compaction. Before bug-fix, the compaction would
// not detect the overlap with level-0 files and would incorrectly place
// the deletion in a deeper level.
ASSERT_OK(Delete("600"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("3", FilesPerLevel());
ASSERT_EQ("NOT_FOUND", Get("600"));
} while (ChangeOptions());
}
TEST(DBTest, L0_CompactionBug_Issue44_a) {
Reopen();
ASSERT_OK(Put("b", "v"));
Reopen();
ASSERT_OK(Delete("b"));
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Put("a", "v"));
Reopen();
Reopen();
ASSERT_EQ("(a->v)", Contents());
DelayMilliseconds(1000); // Wait for compaction to finish
ASSERT_EQ("(a->v)", Contents());
}
TEST(DBTest, L0_CompactionBug_Issue44_b) {
Reopen();
Put("","");
Reopen();
Delete("e");
Put("","");
Reopen();
Put("c", "cv");
Reopen();
Put("","");
Reopen();
Put("","");
DelayMilliseconds(1000); // Wait for compaction to finish
Reopen();
Put("d","dv");
Reopen();
Put("","");
Reopen();
Delete("d");
Delete("b");
Reopen();
ASSERT_EQ("(->)(c->cv)", Contents());
DelayMilliseconds(1000); // Wait for compaction to finish
ASSERT_EQ("(->)(c->cv)", Contents());
}
TEST(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
virtual const char* Name() const { return "leveldb.NewComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(a, b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
BytewiseComparator()->FindShortestSeparator(s, l);
}
virtual void FindShortSuccessor(std::string* key) const {
BytewiseComparator()->FindShortSuccessor(key);
}
};
NewComparator cmp;
Options new_options = CurrentOptions();
new_options.comparator = &cmp;
Status s = TryReopen(&new_options);
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
}
TEST(DBTest, CustomComparator) {
class NumberComparator : public Comparator {
public:
virtual const char* Name() const { return "test.NumberComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return ToNumber(a) - ToNumber(b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
ToNumber(*s); // Check format
ToNumber(l); // Check format
}
virtual void FindShortSuccessor(std::string* key) const {
ToNumber(*key); // Check format
}
private:
static int ToNumber(const Slice& x) {
// Check that there are no extra characters.
ASSERT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size()-1] == ']')
<< EscapeString(x);
int val;
char ignored;
ASSERT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
<< EscapeString(x);
return val;
}
};
NumberComparator cmp;
Options new_options = CurrentOptions();
new_options.create_if_missing = true;
new_options.comparator = &cmp;
new_options.filter_policy = NULL; // Cannot use bloom filters
new_options.write_buffer_size = 1000; // Compact more often
DestroyAndReopen(&new_options);
ASSERT_OK(Put("[10]", "ten"));
ASSERT_OK(Put("[0x14]", "twenty"));
for (int i = 0; i < 2; i++) {
ASSERT_EQ("ten", Get("[10]"));
ASSERT_EQ("ten", Get("[0xa]"));
ASSERT_EQ("twenty", Get("[20]"));
ASSERT_EQ("twenty", Get("[0x14]"));
ASSERT_EQ("NOT_FOUND", Get("[15]"));
ASSERT_EQ("NOT_FOUND", Get("[0xf]"));
Compact("[0]", "[9999]");
}
for (int run = 0; run < 2; run++) {
for (int i = 0; i < 1000; i++) {
char buf[100];
snprintf(buf, sizeof(buf), "[%d]", i*10);
ASSERT_OK(Put(buf, buf));
}
Compact("[0]", "[1000000]");
}
}
TEST(DBTest, ManualCompaction) {
ASSERT_EQ(config::kMaxMemCompactLevel, 2)
<< "Need to update this test to match kMaxMemCompactLevel";
MakeTables(3, "p", "q");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls before files
Compact("", "c");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls after files
Compact("r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range overlaps files
Compact("p1", "p9");
ASSERT_EQ("0,0,1", FilesPerLevel());
// Populate a different range
MakeTables(3, "c", "e");
ASSERT_EQ("1,1,2", FilesPerLevel());
// Compact just the new range
Compact("b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel());
// Compact all
MakeTables(1, "a", "z");
ASSERT_EQ("0,1,2", FilesPerLevel());
db_->CompactRange(NULL, NULL);
ASSERT_EQ("0,0,1", FilesPerLevel());
}
TEST(DBTest, DBOpen_Options) {
std::string dbname = test::TmpDir() + "/db_options_test";
DestroyDB(dbname, Options());
// Does not exist, and create_if_missing == false: error
DB* db = NULL;
Options opts;
opts.create_if_missing = false;
Status s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != NULL);
ASSERT_TRUE(db == NULL);
// Does not exist, and create_if_missing == true: OK
opts.create_if_missing = true;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
// Does exist, and error_if_exists == true: error
opts.create_if_missing = false;
opts.error_if_exists = true;
s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != NULL);
ASSERT_TRUE(db == NULL);
// Does exist, and error_if_exists == false: OK
opts.create_if_missing = true;
opts.error_if_exists = false;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
}
TEST(DBTest, Locking) {
DB* db2 = NULL;
Status s = DB::Open(CurrentOptions(), dbname_, &db2);
ASSERT_TRUE(!s.ok()) << "Locking did not prevent re-opening db";
}
// Check that number of files does not grow when we are out of space
TEST(DBTest, NoSpace) {
Options options = CurrentOptions();
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
Compact("a", "z");
const int num_files = CountFiles();
env_->no_space_.Release_Store(env_); // Force out-of-space errors
for (int i = 0; i < 10; i++) {
for (int level = 0; level < config::kNumLevels-1; level++) {
dbfull()->TEST_CompactRange(level, NULL, NULL);
}
}
env_->no_space_.Release_Store(NULL);
ASSERT_LT(CountFiles(), num_files + 3);
}
TEST(DBTest, NonWritableFileSystem) {
Options options = CurrentOptions();
options.write_buffer_size = 1000;
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
env_->non_writable_.Release_Store(env_); // Force errors for new files
std::string big(100000, 'x');
int errors = 0;
for (int i = 0; i < 20; i++) {
fprintf(stderr, "iter %d; errors %d\n", i, errors);
if (!Put("foo", big).ok()) {
errors++;
DelayMilliseconds(100);
}
}
ASSERT_GT(errors, 0);
env_->non_writable_.Release_Store(NULL);
}
TEST(DBTest, WriteSyncError) {
// Check that log sync errors cause the DB to disallow future writes.
// (a) Cause log sync calls to fail
Options options = CurrentOptions();
options.env = env_;
Reopen(&options);
env_->data_sync_error_.Release_Store(env_);
// (b) Normal write should succeed
WriteOptions w;
ASSERT_OK(db_->Put(w, "k1", "v1"));
ASSERT_EQ("v1", Get("k1"));
// (c) Do a sync write; should fail
w.sync = true;
ASSERT_TRUE(!db_->Put(w, "k2", "v2").ok());
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("NOT_FOUND", Get("k2"));
// (d) make sync behave normally
env_->data_sync_error_.Release_Store(NULL);
// (e) Do a non-sync write; should fail
w.sync = false;
ASSERT_TRUE(!db_->Put(w, "k3", "v3").ok());
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("NOT_FOUND", Get("k2"));
ASSERT_EQ("NOT_FOUND", Get("k3"));
}
TEST(DBTest, ManifestWriteError) {
// Test for the following problem:
// (a) Compaction produces file F
// (b) Log record containing F is written to MANIFEST file, but Sync() fails
// (c) GC deletes F
// (d) After reopening DB, reads fail since deleted F is named in log record
// We iterate twice. In the second iteration, everything is the
// same except the log record never makes it to the MANIFEST file.
for (int iter = 0; iter < 2; iter++) {
port::AtomicPointer* error_type = (iter == 0)
? &env_->manifest_sync_error_
: &env_->manifest_write_error_;
// Insert foo=>bar mapping
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.error_if_exists = false;
DestroyAndReopen(&options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_EQ("bar", Get("foo"));
// Memtable compaction (will succeed)
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("bar", Get("foo"));
const int last = config::kMaxMemCompactLevel;
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo=>bar is now in last level
// Merging compaction (will fail)
error_type->Release_Store(env_);
dbfull()->TEST_CompactRange(last, NULL, NULL); // Should fail
ASSERT_EQ("bar", Get("foo"));
// Recovery: should not lose data
error_type->Release_Store(NULL);
Reopen(&options);
ASSERT_EQ("bar", Get("foo"));
}
}
TEST(DBTest, MissingSSTFile) {
ASSERT_OK(Put("foo", "bar"));
ASSERT_EQ("bar", Get("foo"));
// Dump the memtable to disk.
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("bar", Get("foo"));
Close();
ASSERT_TRUE(DeleteAnSSTFile());
Options options = CurrentOptions();
options.paranoid_checks = true;
Status s = TryReopen(&options);
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("issing") != std::string::npos)
<< s.ToString();
}
TEST(DBTest, StillReadSST) {
ASSERT_OK(Put("foo", "bar"));
ASSERT_EQ("bar", Get("foo"));
// Dump the memtable to disk.
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("bar", Get("foo"));
Close();
ASSERT_GT(RenameLDBToSST(), 0);
Options options = CurrentOptions();
options.paranoid_checks = true;
Status s = TryReopen(&options);
ASSERT_TRUE(s.ok());
ASSERT_EQ("bar", Get("foo"));
}
TEST(DBTest, FilesDeletedAfterCompaction) {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
const int num_files = CountFiles();
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
}
ASSERT_EQ(CountFiles(), num_files);
}
TEST(DBTest, BloomFilter) {
env_->count_random_reads_ = true;
Options options = CurrentOptions();
options.env = env_;
options.block_cache = NewLRUCache(0); // Prevent cache hits
options.filter_policy = NewBloomFilterPolicy(10);
Reopen(&options);
// Populate multiple layers
const int N = 10000;
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i)));
}
Compact("a", "z");
for (int i = 0; i < N; i += 100) {
ASSERT_OK(Put(Key(i), Key(i)));
}
dbfull()->TEST_CompactMemTable();
// Prevent auto compactions triggered by seeks
env_->delay_data_sync_.Release_Store(env_);
// Lookup present keys. Should rarely read from small sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i), Get(Key(i)));
}
int reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d present => %d reads\n", N, reads);
ASSERT_GE(reads, N);
ASSERT_LE(reads, N + 2*N/100);
// Lookup present keys. Should rarely read from either sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ("NOT_FOUND", Get(Key(i) + ".missing"));
}
reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d missing => %d reads\n", N, reads);
ASSERT_LE(reads, 3*N/100);
env_->delay_data_sync_.Release_Store(NULL);
Close();
delete options.block_cache;
delete options.filter_policy;
}
// Multi-threaded test:
namespace {
static const int kNumThreads = 4;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;
struct MTState {
DBTest* test;
port::AtomicPointer stop;
port::AtomicPointer counter[kNumThreads];
port::AtomicPointer thread_done[kNumThreads];
};
struct MTThread {
MTState* state;
int id;
};
static void MTThreadBody(void* arg) {
MTThread* t = reinterpret_cast<MTThread*>(arg);
int id = t->id;
DB* db = t->state->test->db_;
uintptr_t counter = 0;
fprintf(stderr, "... starting thread %d\n", id);
Random rnd(1000 + id);
std::string value;
char valbuf[1500];
while (t->state->stop.Acquire_Load() == NULL) {
t->state->counter[id].Release_Store(reinterpret_cast<void*>(counter));
int key = rnd.Uniform(kNumKeys);
char keybuf[20];
snprintf(keybuf, sizeof(keybuf), "%016d", key);
if (rnd.OneIn(2)) {
// Write values of the form <key, my id, counter>.
// We add some padding for force compactions.
snprintf(valbuf, sizeof(valbuf), "%d.%d.%-1000d",
key, id, static_cast<int>(counter));
ASSERT_OK(db->Put(WriteOptions(), Slice(keybuf), Slice(valbuf)));
} else {
// Read a value and verify that it matches the pattern written above.
Status s = db->Get(ReadOptions(), Slice(keybuf), &value);
if (s.IsNotFound()) {
// Key has not yet been written
} else {
// Check that the writer thread counter is >= the counter in the value
ASSERT_OK(s);
int k, w, c;
ASSERT_EQ(3, sscanf(value.c_str(), "%d.%d.%d", &k, &w, &c)) << value;
ASSERT_EQ(k, key);
ASSERT_GE(w, 0);
ASSERT_LT(w, kNumThreads);
ASSERT_LE(static_cast<uintptr_t>(c), reinterpret_cast<uintptr_t>(
t->state->counter[w].Acquire_Load()));
}
}
counter++;
}
t->state->thread_done[id].Release_Store(t);
fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}
} // namespace
TEST(DBTest, MultiThreaded) {
do {
// Initialize state
MTState mt;
mt.test = this;
mt.stop.Release_Store(0);
for (int id = 0; id < kNumThreads; id++) {
mt.counter[id].Release_Store(0);
mt.thread_done[id].Release_Store(0);
}
// Start threads
MTThread thread[kNumThreads];
for (int id = 0; id < kNumThreads; id++) {
thread[id].state = &mt;
thread[id].id = id;
env_->StartThread(MTThreadBody, &thread[id]);
}
// Let them run for a while
DelayMilliseconds(kTestSeconds * 1000);
// Stop the threads and wait for them to finish
mt.stop.Release_Store(&mt);
for (int id = 0; id < kNumThreads; id++) {
while (mt.thread_done[id].Acquire_Load() == NULL) {
DelayMilliseconds(100);
}
}
} while (ChangeOptions());
}
namespace {
typedef std::map<std::string, std::string> KVMap;
}
class ModelDB: public DB {
public:
class ModelSnapshot : public Snapshot {
public:
KVMap map_;
};
explicit ModelDB(const Options& options): options_(options) { }
~ModelDB() { }
virtual Status Put(const WriteOptions& o, const Slice& k, const Slice& v) {
return DB::Put(o, k, v);
}
virtual Status Delete(const WriteOptions& o, const Slice& key) {
return DB::Delete(o, key);
}
virtual Status Get(const ReadOptions& options,
const Slice& key, std::string* value) {
assert(false); // Not implemented
return Status::NotFound(key);
}
virtual Iterator* NewIterator(const ReadOptions& options) {
if (options.snapshot == NULL) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
&(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
return new ModelIter(snapshot_state, false);
}
}
virtual const Snapshot* GetSnapshot() {
ModelSnapshot* snapshot = new ModelSnapshot;
snapshot->map_ = map_;
return snapshot;
}
virtual void ReleaseSnapshot(const Snapshot* snapshot) {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
virtual Status Write(const WriteOptions& options, WriteBatch* batch) {
class Handler : public WriteBatch::Handler {
public:
KVMap* map_;
virtual void Put(const Slice& key, const Slice& value) {
(*map_)[key.ToString()] = value.ToString();
}
virtual void Delete(const Slice& key) {
map_->erase(key.ToString());
}
};
Handler handler;
handler.map_ = &map_;
return batch->Iterate(&handler);
}
virtual bool GetProperty(const Slice& property, std::string* value) {
return false;
}
virtual void GetApproximateSizes(const Range* r, int n, uint64_t* sizes) {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
}
virtual void CompactRange(const Slice* start, const Slice* end) {
}
private:
class ModelIter: public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {
}
~ModelIter() {
if (owned_) delete map_;
}
virtual bool Valid() const { return iter_ != map_->end(); }
virtual void SeekToFirst() { iter_ = map_->begin(); }
virtual void SeekToLast() {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
virtual void Seek(const Slice& k) {
iter_ = map_->lower_bound(k.ToString());
}
virtual void Next() { ++iter_; }
virtual void Prev() { --iter_; }
virtual Slice key() const { return iter_->first; }
virtual Slice value() const { return iter_->second; }
virtual Status status() const { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
};
static std::string RandomKey(Random* rnd) {
int len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step,
DB* model,
DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid();
miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(miter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
fprintf(stderr, "%d entries compared: ok=%d\n", count, ok);
delete miter;
delete dbiter;
return ok;
}
TEST(DBTest, Randomized) {
Random rnd(test::RandomSeed());
do {
ModelDB model(CurrentOptions());
const int N = 10000;
const Snapshot* model_snap = NULL;
const Snapshot* db_snap = NULL;
std::string k, v;
for (int step = 0; step < N; step++) {
if (step % 100 == 0) {
fprintf(stderr, "Step %d of %d\n", step, N);
}
// TODO(sanjay): Test Get() works
int p = rnd.Uniform(100);
if (p < 45) { // Put
k = RandomKey(&rnd);
v = RandomString(&rnd,
rnd.OneIn(20)
? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = RandomString(&rnd, rnd.Uniform(10));
b.Put(k, v);
} else {
b.Delete(k);
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
Reopen();
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
} while (ChangeOptions());
}
std::string MakeKey(unsigned int num) {
char buf[30];
snprintf(buf, sizeof(buf), "%016u", num);
return std::string(buf);
}
void BM_LogAndApply(int iters, int num_base_files) {
std::string dbname = test::TmpDir() + "/leveldb_test_benchmark";
DestroyDB(dbname, Options());
DB* db = NULL;
Options opts;
opts.create_if_missing = true;
Status s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
Env* env = Env::Default();
port::Mutex mu;
MutexLock l(&mu);
InternalKeyComparator cmp(BytewiseComparator());
Options options;
VersionSet vset(dbname, &options, NULL, &cmp);
bool save_manifest;
ASSERT_OK(vset.Recover(&save_manifest));
VersionEdit vbase;
uint64_t fnum = 1;
for (int i = 0; i < num_base_files; i++) {
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vbase.AddFile(2, fnum++, 1 /* file size */, start, limit);
}
ASSERT_OK(vset.LogAndApply(&vbase, &mu));
uint64_t start_micros = env->NowMicros();
for (int i = 0; i < iters; i++) {
VersionEdit vedit;
vedit.DeleteFile(2, fnum);
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vedit.AddFile(2, fnum++, 1 /* file size */, start, limit);
vset.LogAndApply(&vedit, &mu);
}
uint64_t stop_micros = env->NowMicros();
unsigned int us = stop_micros - start_micros;
char buf[16];
snprintf(buf, sizeof(buf), "%d", num_base_files);
fprintf(stderr,
"BM_LogAndApply/%-6s %8d iters : %9u us (%7.0f us / iter)\n",
buf, iters, us, ((float)us) / iters);
}
} // namespace leveldb
int main(int argc, char** argv) {
if (argc > 1 && std::string(argv[1]) == "--benchmark") {
leveldb::BM_LogAndApply(1000, 1);
leveldb::BM_LogAndApply(1000, 100);
leveldb::BM_LogAndApply(1000, 10000);
leveldb::BM_LogAndApply(100, 100000);
return 0;
}
return leveldb::test::RunAllTests();
}