// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/skiplist.h" #include #include #include "gtest/gtest.h" #include "leveldb/env.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/arena.h" #include "util/hash.h" #include "util/random.h" #include "util/testutil.h" namespace leveldb { typedef uint64_t Key; struct Comparator { int operator()(const Key& a, const Key& b) const { if (a < b) { return -1; } else if (a > b) { return +1; } else { return 0; } } }; TEST(SkipTest, Empty) { Arena arena; Comparator cmp; SkipList list(cmp, &arena); ASSERT_TRUE(!list.Contains(10)); SkipList::Iterator iter(&list); ASSERT_TRUE(!iter.Valid()); iter.SeekToFirst(); ASSERT_TRUE(!iter.Valid()); iter.Seek(100); ASSERT_TRUE(!iter.Valid()); iter.SeekToLast(); ASSERT_TRUE(!iter.Valid()); } TEST(SkipTest, InsertAndLookup) { const int N = 2000; const int R = 5000; Random rnd(1000); std::set keys; Arena arena; Comparator cmp; SkipList list(cmp, &arena); for (int i = 0; i < N; i++) { Key key = rnd.Next() % R; if (keys.insert(key).second) { list.Insert(key); } } for (int i = 0; i < R; i++) { if (list.Contains(i)) { ASSERT_EQ(keys.count(i), 1); } else { ASSERT_EQ(keys.count(i), 0); } } // Simple iterator tests { SkipList::Iterator iter(&list); ASSERT_TRUE(!iter.Valid()); iter.Seek(0); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.begin()), iter.key()); iter.SeekToFirst(); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.begin()), iter.key()); iter.SeekToLast(); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.rbegin()), iter.key()); } // Forward iteration test for (int i = 0; i < R; i++) { SkipList::Iterator iter(&list); iter.Seek(i); // Compare against model iterator std::set::iterator model_iter = keys.lower_bound(i); for (int j = 0; j < 3; j++) { if (model_iter == keys.end()) { ASSERT_TRUE(!iter.Valid()); break; } else { ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*model_iter, iter.key()); ++model_iter; iter.Next(); } } } // Backward iteration test { SkipList::Iterator iter(&list); iter.SeekToLast(); // Compare against model iterator for (std::set::reverse_iterator model_iter = keys.rbegin(); model_iter != keys.rend(); ++model_iter) { ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*model_iter, iter.key()); iter.Prev(); } ASSERT_TRUE(!iter.Valid()); } } // We want to make sure that with a single writer and multiple // concurrent readers (with no synchronization other than when a // reader's iterator is created), the reader always observes all the // data that was present in the skip list when the iterator was // constructed. Because insertions are happening concurrently, we may // also observe new values that were inserted since the iterator was // constructed, but we should never miss any values that were present // at iterator construction time. // // We generate multi-part keys: // // where: // key is in range [0..K-1] // gen is a generation number for key // hash is hash(key,gen) // // The insertion code picks a random key, sets gen to be 1 + the last // generation number inserted for that key, and sets hash to Hash(key,gen). // // At the beginning of a read, we snapshot the last inserted // generation number for each key. We then iterate, including random // calls to Next() and Seek(). For every key we encounter, we // check that it is either expected given the initial snapshot or has // been concurrently added since the iterator started. class ConcurrentTest { private: static constexpr uint32_t K = 4; static uint64_t key(Key key) { return (key >> 40); } static uint64_t gen(Key key) { return (key >> 8) & 0xffffffffu; } static uint64_t hash(Key key) { return key & 0xff; } static uint64_t HashNumbers(uint64_t k, uint64_t g) { uint64_t data[2] = {k, g}; return Hash(reinterpret_cast(data), sizeof(data), 0); } static Key MakeKey(uint64_t k, uint64_t g) { static_assert(sizeof(Key) == sizeof(uint64_t), ""); assert(k <= K); // We sometimes pass K to seek to the end of the skiplist assert(g <= 0xffffffffu); return ((k << 40) | (g << 8) | (HashNumbers(k, g) & 0xff)); } static bool IsValidKey(Key k) { return hash(k) == (HashNumbers(key(k), gen(k)) & 0xff); } static Key RandomTarget(Random* rnd) { switch (rnd->Next() % 10) { case 0: // Seek to beginning return MakeKey(0, 0); case 1: // Seek to end return MakeKey(K, 0); default: // Seek to middle return MakeKey(rnd->Next() % K, 0); } } // Per-key generation struct State { std::atomic generation[K]; void Set(int k, int v) { generation[k].store(v, std::memory_order_release); } int Get(int k) { return generation[k].load(std::memory_order_acquire); } State() { for (int k = 0; k < K; k++) { Set(k, 0); } } }; // Current state of the test State current_; Arena arena_; // SkipList is not protected by mu_. We just use a single writer // thread to modify it. SkipList list_; public: ConcurrentTest() : list_(Comparator(), &arena_) {} // REQUIRES: External synchronization void WriteStep(Random* rnd) { const uint32_t k = rnd->Next() % K; const intptr_t g = current_.Get(k) + 1; const Key key = MakeKey(k, g); list_.Insert(key); current_.Set(k, g); } void ReadStep(Random* rnd) { // Remember the initial committed state of the skiplist. State initial_state; for (int k = 0; k < K; k++) { initial_state.Set(k, current_.Get(k)); } Key pos = RandomTarget(rnd); SkipList::Iterator iter(&list_); iter.Seek(pos); while (true) { Key current; if (!iter.Valid()) { current = MakeKey(K, 0); } else { current = iter.key(); ASSERT_TRUE(IsValidKey(current)) << current; } ASSERT_LE(pos, current) << "should not go backwards"; // Verify that everything in [pos,current) was not present in // initial_state. while (pos < current) { ASSERT_LT(key(pos), K) << pos; // Note that generation 0 is never inserted, so it is ok if // <*,0,*> is missing. ASSERT_TRUE((gen(pos) == 0) || (gen(pos) > static_cast(initial_state.Get(key(pos))))) << "key: " << key(pos) << "; gen: " << gen(pos) << "; initgen: " << initial_state.Get(key(pos)); // Advance to next key in the valid key space if (key(pos) < key(current)) { pos = MakeKey(key(pos) + 1, 0); } else { pos = MakeKey(key(pos), gen(pos) + 1); } } if (!iter.Valid()) { break; } if (rnd->Next() % 2) { iter.Next(); pos = MakeKey(key(pos), gen(pos) + 1); } else { Key new_target = RandomTarget(rnd); if (new_target > pos) { pos = new_target; iter.Seek(new_target); } } } } }; // Needed when building in C++11 mode. constexpr uint32_t ConcurrentTest::K; // Simple test that does single-threaded testing of the ConcurrentTest // scaffolding. TEST(SkipTest, ConcurrentWithoutThreads) { ConcurrentTest test; Random rnd(test::RandomSeed()); for (int i = 0; i < 10000; i++) { test.ReadStep(&rnd); test.WriteStep(&rnd); } } class TestState { public: ConcurrentTest t_; int seed_; std::atomic quit_flag_; enum ReaderState { STARTING, RUNNING, DONE }; explicit TestState(int s) : seed_(s), quit_flag_(false), state_(STARTING), state_cv_(&mu_) {} void Wait(ReaderState s) LOCKS_EXCLUDED(mu_) { mu_.Lock(); while (state_ != s) { state_cv_.Wait(); } mu_.Unlock(); } void Change(ReaderState s) LOCKS_EXCLUDED(mu_) { mu_.Lock(); state_ = s; state_cv_.Signal(); mu_.Unlock(); } private: port::Mutex mu_; ReaderState state_ GUARDED_BY(mu_); port::CondVar state_cv_ GUARDED_BY(mu_); }; static void ConcurrentReader(void* arg) { TestState* state = reinterpret_cast(arg); Random rnd(state->seed_); int64_t reads = 0; state->Change(TestState::RUNNING); while (!state->quit_flag_.load(std::memory_order_acquire)) { state->t_.ReadStep(&rnd); ++reads; } state->Change(TestState::DONE); } static void RunConcurrent(int run) { const int seed = test::RandomSeed() + (run * 100); Random rnd(seed); const int N = 1000; const int kSize = 1000; for (int i = 0; i < N; i++) { if ((i % 100) == 0) { fprintf(stderr, "Run %d of %d\n", i, N); } TestState state(seed + 1); Env::Default()->Schedule(ConcurrentReader, &state); state.Wait(TestState::RUNNING); for (int i = 0; i < kSize; i++) { state.t_.WriteStep(&rnd); } state.quit_flag_.store(true, std::memory_order_release); state.Wait(TestState::DONE); } } TEST(SkipTest, Concurrent1) { RunConcurrent(1); } TEST(SkipTest, Concurrent2) { RunConcurrent(2); } TEST(SkipTest, Concurrent3) { RunConcurrent(3); } TEST(SkipTest, Concurrent4) { RunConcurrent(4); } TEST(SkipTest, Concurrent5) { RunConcurrent(5); } } // namespace leveldb int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }