作者: 韩晨旭 10225101440 李畅 10225102463
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

128 рядки
4.3 KiB

  1. // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file. See the AUTHORS file for names of contributors.
  4. #include <math.h>
  5. #include <stdio.h>
  6. #include "port/port.h"
  7. #include "util/histogram.h"
  8. namespace leveldb {
  9. const double Histogram::kBucketLimit[kNumBuckets] = {
  10. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45,
  11. 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450,
  12. 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000,
  13. 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000,
  14. 16000, 18000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 60000,
  15. 70000, 80000, 90000, 100000, 120000, 140000, 160000, 180000, 200000,
  16. 250000, 300000, 350000, 400000, 450000, 500000, 600000, 700000, 800000,
  17. 900000, 1000000, 1200000, 1400000, 1600000, 1800000, 2000000, 2500000,
  18. 3000000, 3500000, 4000000, 4500000, 5000000, 6000000, 7000000, 8000000,
  19. 9000000, 10000000, 12000000, 14000000, 16000000, 18000000, 20000000,
  20. 25000000, 30000000, 35000000, 40000000, 45000000, 50000000, 60000000,
  21. 70000000, 80000000, 90000000, 100000000, 120000000, 140000000, 160000000,
  22. 180000000, 200000000, 250000000, 300000000, 350000000, 400000000,
  23. 450000000, 500000000, 600000000, 700000000, 800000000, 900000000,
  24. 1000000000, 1200000000, 1400000000, 1600000000, 1800000000, 2000000000,
  25. 2500000000.0, 3000000000.0, 3500000000.0, 4000000000.0, 4500000000.0,
  26. 5000000000.0, 6000000000.0, 7000000000.0, 8000000000.0, 9000000000.0,
  27. 1e200,
  28. };
  29. void Histogram::Clear() {
  30. min_ = kBucketLimit[kNumBuckets-1];
  31. max_ = 0;
  32. num_ = 0;
  33. sum_ = 0;
  34. sum_squares_ = 0;
  35. for (int i = 0; i < kNumBuckets; i++) {
  36. buckets_[i] = 0;
  37. }
  38. }
  39. void Histogram::Add(double value) {
  40. // Linear search is fast enough for our usage in db_bench
  41. int b = 0;
  42. while (b < kNumBuckets - 1 && kBucketLimit[b] <= value) {
  43. b++;
  44. }
  45. buckets_[b] += 1.0;
  46. if (min_ > value) min_ = value;
  47. if (max_ < value) max_ = value;
  48. num_++;
  49. sum_ += value;
  50. sum_squares_ += (value * value);
  51. }
  52. double Histogram::Median() const {
  53. return Percentile(50.0);
  54. }
  55. double Histogram::Percentile(double p) const {
  56. double threshold = num_ * (p / 100.0);
  57. double sum = 0;
  58. for (int b = 0; b < kNumBuckets; b++) {
  59. sum += buckets_[b];
  60. if (sum >= threshold) {
  61. // Scale linearly within this bucket
  62. double left_point = (b == 0) ? 0 : kBucketLimit[b-1];
  63. double right_point = kBucketLimit[b];
  64. double left_sum = sum - buckets_[b];
  65. double right_sum = sum;
  66. double pos = (threshold - left_sum) / (right_sum - left_sum);
  67. double r = left_point + (right_point - left_point) * pos;
  68. if (r < min_) r = min_;
  69. if (r > max_) r = max_;
  70. return r;
  71. }
  72. }
  73. return max_;
  74. }
  75. double Histogram::Average() const {
  76. if (num_ == 0.0) return 0;
  77. return sum_ / num_;
  78. }
  79. double Histogram::StandardDeviation() const {
  80. if (num_ == 0.0) return 0;
  81. double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_);
  82. return sqrt(variance);
  83. }
  84. std::string Histogram::ToString() const {
  85. std::string r;
  86. char buf[200];
  87. snprintf(buf, sizeof(buf),
  88. "Count: %.0f Average: %.4f StdDev: %.2f\n",
  89. num_, Average(), StandardDeviation());
  90. r.append(buf);
  91. snprintf(buf, sizeof(buf),
  92. "Min: %.4f Median: %.4f Max: %.4f\n",
  93. (num_ == 0.0 ? 0.0 : min_), Median(), max_);
  94. r.append(buf);
  95. r.append("------------------------------------------------------\n");
  96. const double mult = 100.0 / num_;
  97. double sum = 0;
  98. for (int b = 0; b < kNumBuckets; b++) {
  99. if (buckets_[b] <= 0.0) continue;
  100. sum += buckets_[b];
  101. snprintf(buf, sizeof(buf),
  102. "[ %7.0f, %7.0f ) %7.0f %7.3f%% %7.3f%% ",
  103. ((b == 0) ? 0.0 : kBucketLimit[b-1]), // left
  104. kBucketLimit[b], // right
  105. buckets_[b], // count
  106. mult * buckets_[b], // percentage
  107. mult * sum); // cumulative percentage
  108. r.append(buf);
  109. // Add hash marks based on percentage; 20 marks for 100%.
  110. int marks = static_cast<int>(20*(buckets_[b] / num_) + 0.5);
  111. r.append(marks, '#');
  112. r.push_back('\n');
  113. }
  114. return r;
  115. }
  116. }