10215300402 朱维清 10222140408 谷杰
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

103 regels
3.9 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// A Cache is an interface that maps keys to values. It has internal
// synchronization and may be safely accessed concurrently from
// multiple threads. It may automatically evict entries to make room
// for new entries. Values have a specified charge against the cache
// capacity. For example, a cache where the values are variable
// length strings, may use the length of the string as the charge for
// the string.
//
// A builtin cache implementation with a least-recently-used eviction
// policy is provided. Clients may use their own implementations if
// they want something more sophisticated (like scan-resistance, a
// custom eviction policy, variable cache sizing, etc.)
#ifndef STORAGE_LEVELDB_INCLUDE_CACHE_H_
#define STORAGE_LEVELDB_INCLUDE_CACHE_H_
#include <cstdint>
#include "leveldb/export.h"
#include "leveldb/slice.h"
namespace leveldb {
class LEVELDB_EXPORT Cache;
// Create a new cache with a fixed size capacity. This implementation
// of Cache uses a least-recently-used eviction policy.
LEVELDB_EXPORT Cache* NewLRUCache(size_t capacity);
class LEVELDB_EXPORT Cache {
public:
Cache() = default;
Cache(const Cache&) = delete;
Cache& operator=(const Cache&) = delete;
// Destroys all existing entries by calling the "deleter"
// function that was passed to the constructor.
virtual ~Cache();
// Opaque handle to an entry stored in the cache.
struct Handle {};
// Insert a mapping from key->value into the cache and assign it
// the specified charge against the total cache capacity.
//
// Returns a handle that corresponds to the mapping. The caller
// must call this->Release(handle) when the returned mapping is no
// longer needed.
//
// When the inserted entry is no longer needed, the key and
// value will be passed to "deleter".
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value)) = 0;
// If the cache has no mapping for "key", returns nullptr.
//
// Else return a handle that corresponds to the mapping. The caller
// must call this->Release(handle) when the returned mapping is no
// longer needed.
virtual Handle* Lookup(const Slice& key) = 0;
// Release a mapping returned by a previous Lookup().
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual void Release(Handle* handle) = 0;
// Return the value encapsulated in a handle returned by a
// successful Lookup().
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual void* Value(Handle* handle) = 0;
// If the cache contains entry for key, erase it. Note that the
// underlying entry will be kept around until all existing handles
// to it have been released.
virtual void Erase(const Slice& key) = 0;
// Return a new numeric id. May be used by multiple clients who are
// sharing the same cache to partition the key space. Typically the
// client will allocate a new id at startup and prepend the id to
// its cache keys.
virtual uint64_t NewId() = 0;
// Remove all cache entries that are not actively in use. Memory-constrained
// applications may wish to call this method to reduce memory usage.
// Default implementation of Prune() does nothing. Subclasses are strongly
// encouraged to override the default implementation. A future release of
// leveldb may change Prune() to a pure abstract method.
virtual void Prune() {}
// Return an estimate of the combined charges of all elements stored in the
// cache.
virtual size_t TotalCharge() const = 0;
};
} // namespace leveldb
#endif // STORAGE_LEVELDB_INCLUDE_CACHE_H_