| @ -0,0 +1,57 @@ | |||
| import os | |||
| import tensorflow as tf | |||
| import matplotlib.pyplot as plt | |||
| import numpy as np | |||
| mnist = tf.keras.datasets.mnist | |||
| (x_train, y_train),(x_test, y_test) = mnist.load_data(path="/mnist.npz") #加载mnist数据集 | |||
| #验证mnist数据集大小。x为数据,y为标签。mnist每张图的像素为28*28 | |||
| print(x_train.shape) | |||
| print(y_train.shape) | |||
| print(x_test.shape) | |||
| print(y_test.shape) | |||
| #打印训练集中前9张,看看是什么数字 | |||
| for i in range(9): | |||
| plt.subplot(3,3,1+i) | |||
| plt.imshow(x_train[i], cmap='gray') | |||
| plt.show() | |||
| plt.savefig('./mnist/output/1.jpg') | |||
| #打印相应的标签 | |||
| print(y_train[:9]) | |||
| #基操:将像素标准化一下 | |||
| x_train, x_test = x_train / 255.0, x_test / 255.0 | |||
| #搭建一个两层神经网络 | |||
| model = tf.keras.models.Sequential([ | |||
| tf.keras.layers.Flatten(input_shape=(28, 28)), #拉伸图像成一维向量 | |||
| tf.keras.layers.Dense(128, activation='relu'), #第一层全连接+ReLU激活 | |||
| tf.keras.layers.Dropout(0.2), #dropout层 | |||
| tf.keras.layers.Dense(10, activation='softmax') #第二层全连接+softmax激活,输出预测标签 | |||
| ]) | |||
| #设置训练超参,优化器为sgd,损失函数为交叉熵,训练衡量指标为accuracy | |||
| model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy']) | |||
| #开始训练,训练5个epoch,一个epoch代表所有图像计算一遍。每一个epoch能观察到训练精度的提升 | |||
| model.fit(x_train, y_train, epochs=5) | |||
| #计算训练了5个epoch的模型在测试集上的表现 | |||
| model.evaluate(x_test, y_test) | |||
| #直观看一下模型预测结果,打印测试集中的前9张图像 | |||
| for i in range(9): | |||
| plt.subplot(3,3,1+i) | |||
| plt.imshow(x_test[i], cmap='gray') | |||
| plt.show() | |||
| plt.savefig('./mnist/output/2.jpg') | |||
| #打印模型识别的数字,是否正确? | |||
| # np.argmax(model(x_test[:9]).numpy(), axis=1) | |||
| #保存训练好的模型 | |||
| model.save("./mnist/output/model_epoch_5") | |||