|
|
- # User Guide
-
- ## Command Line
-
- [Output Formats](#output-formats)
-
- [Output Files](#output-files)
-
- [Running Benchmarks](#running-benchmarks)
-
- [Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
-
- [Result Comparison](#result-comparison)
-
- [Extra Context](#extra-context)
-
- ## Library
-
- [Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
-
- [Setup/Teardown](#setupteardown)
-
- [Passing Arguments](#passing-arguments)
-
- [Custom Benchmark Name](#custom-benchmark-name)
-
- [Calculating Asymptotic Complexity](#asymptotic-complexity)
-
- [Templated Benchmarks](#templated-benchmarks)
-
- [Fixtures](#fixtures)
-
- [Custom Counters](#custom-counters)
-
- [Multithreaded Benchmarks](#multithreaded-benchmarks)
-
- [CPU Timers](#cpu-timers)
-
- [Manual Timing](#manual-timing)
-
- [Setting the Time Unit](#setting-the-time-unit)
-
- [Random Interleaving](random_interleaving.md)
-
- [User-Requested Performance Counters](perf_counters.md)
-
- [Preventing Optimization](#preventing-optimization)
-
- [Reporting Statistics](#reporting-statistics)
-
- [Custom Statistics](#custom-statistics)
-
- [Memory Usage](#memory-usage)
-
- [Using RegisterBenchmark](#using-register-benchmark)
-
- [Exiting with an Error](#exiting-with-an-error)
-
- [A Faster `KeepRunning` Loop](#a-faster-keep-running-loop)
-
- ## Benchmarking Tips
-
- [Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
-
- [Reducing Variance in Benchmarks](reducing_variance.md)
-
- <a name="output-formats" />
-
- ## Output Formats
-
- The library supports multiple output formats. Use the
- `--benchmark_format=<console|json|csv>` flag (or set the
- `BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
- the format type. `console` is the default format.
-
- The Console format is intended to be a human readable format. By default
- the format generates color output. Context is output on stderr and the
- tabular data on stdout. Example tabular output looks like:
-
- ```
- Benchmark Time(ns) CPU(ns) Iterations
- ----------------------------------------------------------------------
- BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
- BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
- BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
- ```
-
- The JSON format outputs human readable json split into two top level attributes.
- The `context` attribute contains information about the run in general, including
- information about the CPU and the date.
- The `benchmarks` attribute contains a list of every benchmark run. Example json
- output looks like:
-
- ```json
- {
- "context": {
- "date": "2015/03/17-18:40:25",
- "num_cpus": 40,
- "mhz_per_cpu": 2801,
- "cpu_scaling_enabled": false,
- "build_type": "debug"
- },
- "benchmarks": [
- {
- "name": "BM_SetInsert/1024/1",
- "iterations": 94877,
- "real_time": 29275,
- "cpu_time": 29836,
- "bytes_per_second": 134066,
- "items_per_second": 33516
- },
- {
- "name": "BM_SetInsert/1024/8",
- "iterations": 21609,
- "real_time": 32317,
- "cpu_time": 32429,
- "bytes_per_second": 986770,
- "items_per_second": 246693
- },
- {
- "name": "BM_SetInsert/1024/10",
- "iterations": 21393,
- "real_time": 32724,
- "cpu_time": 33355,
- "bytes_per_second": 1199226,
- "items_per_second": 299807
- }
- ]
- }
- ```
-
- The CSV format outputs comma-separated values. The `context` is output on stderr
- and the CSV itself on stdout. Example CSV output looks like:
-
- ```
- name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
- "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
- "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
- "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
- ```
-
- <a name="output-files" />
-
- ## Output Files
-
- Write benchmark results to a file with the `--benchmark_out=<filename>` option
- (or set `BENCHMARK_OUT`). Specify the output format with
- `--benchmark_out_format={json|console|csv}` (or set
- `BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that the 'csv' reporter is
- deprecated and the saved `.csv` file
- [is not parsable](https://github.com/google/benchmark/issues/794) by csv
- parsers.
-
- Specifying `--benchmark_out` does not suppress the console output.
-
- <a name="running-benchmarks" />
-
- ## Running Benchmarks
-
- Benchmarks are executed by running the produced binaries. Benchmarks binaries,
- by default, accept options that may be specified either through their command
- line interface or by setting environment variables before execution. For every
- `--option_flag=<value>` CLI switch, a corresponding environment variable
- `OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
- prevails). A complete list of CLI options is available running benchmarks
- with the `--help` switch.
-
- <a name="running-a-subset-of-benchmarks" />
-
- ## Running a Subset of Benchmarks
-
- The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
- environment variable) can be used to only run the benchmarks that match
- the specified `<regex>`. For example:
-
- ```bash
- $ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
- Run on (1 X 2300 MHz CPU )
- 2016-06-25 19:34:24
- Benchmark Time CPU Iterations
- ----------------------------------------------------
- BM_memcpy/32 11 ns 11 ns 79545455
- BM_memcpy/32k 2181 ns 2185 ns 324074
- BM_memcpy/32 12 ns 12 ns 54687500
- BM_memcpy/32k 1834 ns 1837 ns 357143
- ```
-
- ## Disabling Benchmarks
-
- It is possible to temporarily disable benchmarks by renaming the benchmark
- function to have the prefix "DISABLED_". This will cause the benchmark to
- be skipped at runtime.
-
- <a name="result-comparison" />
-
- ## Result comparison
-
- It is possible to compare the benchmarking results.
- See [Additional Tooling Documentation](tools.md)
-
- <a name="extra-context" />
-
- ## Extra Context
-
- Sometimes it's useful to add extra context to the content printed before the
- results. By default this section includes information about the CPU on which
- the benchmarks are running. If you do want to add more context, you can use
- the `benchmark_context` command line flag:
-
- ```bash
- $ ./run_benchmarks --benchmark_context=pwd=`pwd`
- Run on (1 x 2300 MHz CPU)
- pwd: /home/user/benchmark/
- Benchmark Time CPU Iterations
- ----------------------------------------------------
- BM_memcpy/32 11 ns 11 ns 79545455
- BM_memcpy/32k 2181 ns 2185 ns 324074
- ```
-
- You can get the same effect with the API:
-
- ```c++
- benchmark::AddCustomContext("foo", "bar");
- ```
-
- Note that attempts to add a second value with the same key will fail with an
- error message.
-
- <a name="runtime-and-reporting-considerations" />
-
- ## Runtime and Reporting Considerations
-
- When the benchmark binary is executed, each benchmark function is run serially.
- The number of iterations to run is determined dynamically by running the
- benchmark a few times and measuring the time taken and ensuring that the
- ultimate result will be statistically stable. As such, faster benchmark
- functions will be run for more iterations than slower benchmark functions, and
- the number of iterations is thus reported.
-
- In all cases, the number of iterations for which the benchmark is run is
- governed by the amount of time the benchmark takes. Concretely, the number of
- iterations is at least one, not more than 1e9, until CPU time is greater than
- the minimum time, or the wallclock time is 5x minimum time. The minimum time is
- set per benchmark by calling `MinTime` on the registered benchmark object.
-
- Furthermore warming up a benchmark might be necessary in order to get
- stable results because of e.g caching effects of the code under benchmark.
- Warming up means running the benchmark a given amount of time, before
- results are actually taken into account. The amount of time for which
- the warmup should be run can be set per benchmark by calling
- `MinWarmUpTime` on the registered benchmark object or for all benchmarks
- using the `--benchmark_min_warmup_time` command-line option. Note that
- `MinWarmUpTime` will overwrite the value of `--benchmark_min_warmup_time`
- for the single benchmark. How many iterations the warmup run of each
- benchmark takes is determined the same way as described in the paragraph
- above. Per default the warmup phase is set to 0 seconds and is therefore
- disabled.
-
- Average timings are then reported over the iterations run. If multiple
- repetitions are requested using the `--benchmark_repetitions` command-line
- option, or at registration time, the benchmark function will be run several
- times and statistical results across these repetitions will also be reported.
-
- As well as the per-benchmark entries, a preamble in the report will include
- information about the machine on which the benchmarks are run.
-
- <a name="setup-teardown" />
-
- ## Setup/Teardown
-
- Global setup/teardown specific to each benchmark can be done by
- passing a callback to Setup/Teardown:
-
- The setup/teardown callbacks will be invoked once for each benchmark. If the
- benchmark is multi-threaded (will run in k threads), they will be invoked
- exactly once before each run with k threads.
-
- If the benchmark uses different size groups of threads, the above will be true
- for each size group.
-
- Eg.,
-
- ```c++
- static void DoSetup(const benchmark::State& state) {
- }
-
- static void DoTeardown(const benchmark::State& state) {
- }
-
- static void BM_func(benchmark::State& state) {...}
-
- BENCHMARK(BM_func)->Arg(1)->Arg(3)->Threads(16)->Threads(32)->Setup(DoSetup)->Teardown(DoTeardown);
-
- ```
-
- In this example, `DoSetup` and `DoTearDown` will be invoked 4 times each,
- specifically, once for each of this family:
- - BM_func_Arg_1_Threads_16, BM_func_Arg_1_Threads_32
- - BM_func_Arg_3_Threads_16, BM_func_Arg_3_Threads_32
-
- <a name="passing-arguments" />
-
- ## Passing Arguments
-
- Sometimes a family of benchmarks can be implemented with just one routine that
- takes an extra argument to specify which one of the family of benchmarks to
- run. For example, the following code defines a family of benchmarks for
- measuring the speed of `memcpy()` calls of different lengths:
-
- ```c++
- static void BM_memcpy(benchmark::State& state) {
- char* src = new char[state.range(0)];
- char* dst = new char[state.range(0)];
- memset(src, 'x', state.range(0));
- for (auto _ : state)
- memcpy(dst, src, state.range(0));
- state.SetBytesProcessed(int64_t(state.iterations()) *
- int64_t(state.range(0)));
- delete[] src;
- delete[] dst;
- }
- BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(4<<10)->Arg(8<<10);
- ```
-
- The preceding code is quite repetitive, and can be replaced with the following
- short-hand. The following invocation will pick a few appropriate arguments in
- the specified range and will generate a benchmark for each such argument.
-
- ```c++
- BENCHMARK(BM_memcpy)->Range(8, 8<<10);
- ```
-
- By default the arguments in the range are generated in multiples of eight and
- the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
- range multiplier is changed to multiples of two.
-
- ```c++
- BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
- ```
-
- Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
-
- The preceding code shows a method of defining a sparse range. The following
- example shows a method of defining a dense range. It is then used to benchmark
- the performance of `std::vector` initialization for uniformly increasing sizes.
-
- ```c++
- static void BM_DenseRange(benchmark::State& state) {
- for(auto _ : state) {
- std::vector<int> v(state.range(0), state.range(0));
- auto data = v.data();
- benchmark::DoNotOptimize(data);
- benchmark::ClobberMemory();
- }
- }
- BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
- ```
-
- Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
-
- You might have a benchmark that depends on two or more inputs. For example, the
- following code defines a family of benchmarks for measuring the speed of set
- insertion.
-
- ```c++
- static void BM_SetInsert(benchmark::State& state) {
- std::set<int> data;
- for (auto _ : state) {
- state.PauseTiming();
- data = ConstructRandomSet(state.range(0));
- state.ResumeTiming();
- for (int j = 0; j < state.range(1); ++j)
- data.insert(RandomNumber());
- }
- }
- BENCHMARK(BM_SetInsert)
- ->Args({1<<10, 128})
- ->Args({2<<10, 128})
- ->Args({4<<10, 128})
- ->Args({8<<10, 128})
- ->Args({1<<10, 512})
- ->Args({2<<10, 512})
- ->Args({4<<10, 512})
- ->Args({8<<10, 512});
- ```
-
- The preceding code is quite repetitive, and can be replaced with the following
- short-hand. The following macro will pick a few appropriate arguments in the
- product of the two specified ranges and will generate a benchmark for each such
- pair.
-
- <!-- {% raw %} -->
- ```c++
- BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
- ```
- <!-- {% endraw %} -->
-
- Some benchmarks may require specific argument values that cannot be expressed
- with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
- benchmark input for each combination in the product of the supplied vectors.
-
- <!-- {% raw %} -->
- ```c++
- BENCHMARK(BM_SetInsert)
- ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
- // would generate the same benchmark arguments as
- BENCHMARK(BM_SetInsert)
- ->Args({1<<10, 20})
- ->Args({3<<10, 20})
- ->Args({8<<10, 20})
- ->Args({3<<10, 40})
- ->Args({8<<10, 40})
- ->Args({1<<10, 40})
- ->Args({1<<10, 60})
- ->Args({3<<10, 60})
- ->Args({8<<10, 60})
- ->Args({1<<10, 80})
- ->Args({3<<10, 80})
- ->Args({8<<10, 80});
- ```
- <!-- {% endraw %} -->
-
- For the most common scenarios, helper methods for creating a list of
- integers for a given sparse or dense range are provided.
-
- ```c++
- BENCHMARK(BM_SetInsert)
- ->ArgsProduct({
- benchmark::CreateRange(8, 128, /*multi=*/2),
- benchmark::CreateDenseRange(1, 4, /*step=*/1)
- })
- // would generate the same benchmark arguments as
- BENCHMARK(BM_SetInsert)
- ->ArgsProduct({
- {8, 16, 32, 64, 128},
- {1, 2, 3, 4}
- });
- ```
-
- For more complex patterns of inputs, passing a custom function to `Apply` allows
- programmatic specification of an arbitrary set of arguments on which to run the
- benchmark. The following example enumerates a dense range on one parameter,
- and a sparse range on the second.
-
- ```c++
- static void CustomArguments(benchmark::internal::Benchmark* b) {
- for (int i = 0; i <= 10; ++i)
- for (int j = 32; j <= 1024*1024; j *= 8)
- b->Args({i, j});
- }
- BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
- ```
-
- ### Passing Arbitrary Arguments to a Benchmark
-
- In C++11 it is possible to define a benchmark that takes an arbitrary number
- of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
- macro creates a benchmark that invokes `func` with the `benchmark::State` as
- the first argument followed by the specified `args...`.
- The `test_case_name` is appended to the name of the benchmark and
- should describe the values passed.
-
- ```c++
- template <class ...Args>
- void BM_takes_args(benchmark::State& state, Args&&... args) {
- auto args_tuple = std::make_tuple(std::move(args)...);
- for (auto _ : state) {
- std::cout << std::get<0>(args_tuple) << ": " << std::get<1>(args_tuple)
- << '\n';
- [...]
- }
- }
- // Registers a benchmark named "BM_takes_args/int_string_test" that passes
- // the specified values to `args`.
- BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
-
- // Registers the same benchmark "BM_takes_args/int_test" that passes
- // the specified values to `args`.
- BENCHMARK_CAPTURE(BM_takes_args, int_test, 42, 43);
- ```
-
- Note that elements of `...args` may refer to global variables. Users should
- avoid modifying global state inside of a benchmark.
-
- <a name="asymptotic-complexity" />
-
- ## Calculating Asymptotic Complexity (Big O)
-
- Asymptotic complexity might be calculated for a family of benchmarks. The
- following code will calculate the coefficient for the high-order term in the
- running time and the normalized root-mean square error of string comparison.
-
- ```c++
- static void BM_StringCompare(benchmark::State& state) {
- std::string s1(state.range(0), '-');
- std::string s2(state.range(0), '-');
- for (auto _ : state) {
- auto comparison_result = s1.compare(s2);
- benchmark::DoNotOptimize(comparison_result);
- }
- state.SetComplexityN(state.range(0));
- }
- BENCHMARK(BM_StringCompare)
- ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
- ```
-
- As shown in the following invocation, asymptotic complexity might also be
- calculated automatically.
-
- ```c++
- BENCHMARK(BM_StringCompare)
- ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
- ```
-
- The following code will specify asymptotic complexity with a lambda function,
- that might be used to customize high-order term calculation.
-
- ```c++
- BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
- ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
- ```
-
- <a name="custom-benchmark-name" />
-
- ## Custom Benchmark Name
-
- You can change the benchmark's name as follows:
-
- ```c++
- BENCHMARK(BM_memcpy)->Name("memcpy")->RangeMultiplier(2)->Range(8, 8<<10);
- ```
-
- The invocation will execute the benchmark as before using `BM_memcpy` but changes
- the prefix in the report to `memcpy`.
-
- <a name="templated-benchmarks" />
-
- ## Templated Benchmarks
-
- This example produces and consumes messages of size `sizeof(v)` `range_x`
- times. It also outputs throughput in the absence of multiprogramming.
-
- ```c++
- template <class Q> void BM_Sequential(benchmark::State& state) {
- Q q;
- typename Q::value_type v;
- for (auto _ : state) {
- for (int i = state.range(0); i--; )
- q.push(v);
- for (int e = state.range(0); e--; )
- q.Wait(&v);
- }
- // actually messages, not bytes:
- state.SetBytesProcessed(
- static_cast<int64_t>(state.iterations())*state.range(0));
- }
- // C++03
- BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
-
- // C++11 or newer, you can use the BENCHMARK macro with template parameters:
- BENCHMARK(BM_Sequential<WaitQueue<int>>)->Range(1<<0, 1<<10);
-
- ```
-
- Three macros are provided for adding benchmark templates.
-
- ```c++
- #ifdef BENCHMARK_HAS_CXX11
- #define BENCHMARK(func<...>) // Takes any number of parameters.
- #else // C++ < C++11
- #define BENCHMARK_TEMPLATE(func, arg1)
- #endif
- #define BENCHMARK_TEMPLATE1(func, arg1)
- #define BENCHMARK_TEMPLATE2(func, arg1, arg2)
- ```
-
- <a name="fixtures" />
-
- ## Fixtures
-
- Fixture tests are created by first defining a type that derives from
- `::benchmark::Fixture` and then creating/registering the tests using the
- following macros:
-
- * `BENCHMARK_F(ClassName, Method)`
- * `BENCHMARK_DEFINE_F(ClassName, Method)`
- * `BENCHMARK_REGISTER_F(ClassName, Method)`
-
- For Example:
-
- ```c++
- class MyFixture : public benchmark::Fixture {
- public:
- void SetUp(const ::benchmark::State& state) {
- }
-
- void TearDown(const ::benchmark::State& state) {
- }
- };
-
- BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
- for (auto _ : st) {
- ...
- }
- }
-
- BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
- for (auto _ : st) {
- ...
- }
- }
- /* BarTest is NOT registered */
- BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
- /* BarTest is now registered */
- ```
-
- ### Templated Fixtures
-
- Also you can create templated fixture by using the following macros:
-
- * `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
- * `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
-
- For example:
-
- ```c++
- template<typename T>
- class MyFixture : public benchmark::Fixture {};
-
- BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
- for (auto _ : st) {
- ...
- }
- }
-
- BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
- for (auto _ : st) {
- ...
- }
- }
-
- BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
- ```
-
- <a name="custom-counters" />
-
- ## Custom Counters
-
- You can add your own counters with user-defined names. The example below
- will add columns "Foo", "Bar" and "Baz" in its output:
-
- ```c++
- static void UserCountersExample1(benchmark::State& state) {
- double numFoos = 0, numBars = 0, numBazs = 0;
- for (auto _ : state) {
- // ... count Foo,Bar,Baz events
- }
- state.counters["Foo"] = numFoos;
- state.counters["Bar"] = numBars;
- state.counters["Baz"] = numBazs;
- }
- ```
-
- The `state.counters` object is a `std::map` with `std::string` keys
- and `Counter` values. The latter is a `double`-like class, via an implicit
- conversion to `double&`. Thus you can use all of the standard arithmetic
- assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
-
- In multithreaded benchmarks, each counter is set on the calling thread only.
- When the benchmark finishes, the counters from each thread will be summed;
- the resulting sum is the value which will be shown for the benchmark.
-
- The `Counter` constructor accepts three parameters: the value as a `double`
- ; a bit flag which allows you to show counters as rates, and/or as per-thread
- iteration, and/or as per-thread averages, and/or iteration invariants,
- and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
- is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
- (`benchmark::Counter::OneK::kIs1024`)?
-
- ```c++
- // sets a simple counter
- state.counters["Foo"] = numFoos;
-
- // Set the counter as a rate. It will be presented divided
- // by the duration of the benchmark.
- // Meaning: per one second, how many 'foo's are processed?
- state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
-
- // Set the counter as a rate. It will be presented divided
- // by the duration of the benchmark, and the result inverted.
- // Meaning: how many seconds it takes to process one 'foo'?
- state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
-
- // Set the counter as a thread-average quantity. It will
- // be presented divided by the number of threads.
- state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
-
- // There's also a combined flag:
- state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
-
- // This says that we process with the rate of state.range(0) bytes every iteration:
- state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
- ```
-
- When you're compiling in C++11 mode or later you can use `insert()` with
- `std::initializer_list`:
-
- <!-- {% raw %} -->
- ```c++
- // With C++11, this can be done:
- state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
- // ... instead of:
- state.counters["Foo"] = numFoos;
- state.counters["Bar"] = numBars;
- state.counters["Baz"] = numBazs;
- ```
- <!-- {% endraw %} -->
-
- ### Counter Reporting
-
- When using the console reporter, by default, user counters are printed at
- the end after the table, the same way as ``bytes_processed`` and
- ``items_processed``. This is best for cases in which there are few counters,
- or where there are only a couple of lines per benchmark. Here's an example of
- the default output:
-
- ```
- ------------------------------------------------------------------------------
- Benchmark Time CPU Iterations UserCounters...
- ------------------------------------------------------------------------------
- BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
- BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
- BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
- BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
- BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
- BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
- BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
- BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
- BM_Factorial 26 ns 26 ns 26608979 40320
- BM_Factorial/real_time 26 ns 26 ns 26587936 40320
- BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
- BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
- BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
- BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
- ```
-
- If this doesn't suit you, you can print each counter as a table column by
- passing the flag `--benchmark_counters_tabular=true` to the benchmark
- application. This is best for cases in which there are a lot of counters, or
- a lot of lines per individual benchmark. Note that this will trigger a
- reprinting of the table header any time the counter set changes between
- individual benchmarks. Here's an example of corresponding output when
- `--benchmark_counters_tabular=true` is passed:
-
- ```
- ---------------------------------------------------------------------------------------
- Benchmark Time CPU Iterations Bar Bat Baz Foo
- ---------------------------------------------------------------------------------------
- BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
- BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
- BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
- BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
- BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
- BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
- BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
- BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
- --------------------------------------------------------------
- Benchmark Time CPU Iterations
- --------------------------------------------------------------
- BM_Factorial 26 ns 26 ns 26392245 40320
- BM_Factorial/real_time 26 ns 26 ns 26494107 40320
- BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
- BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
- BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
- BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
- BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
- BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
- BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
- BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
- BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
- ```
-
- Note above the additional header printed when the benchmark changes from
- ``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
- not have the same counter set as ``BM_UserCounter``.
-
- <a name="multithreaded-benchmarks"/>
-
- ## Multithreaded Benchmarks
-
- In a multithreaded test (benchmark invoked by multiple threads simultaneously),
- it is guaranteed that none of the threads will start until all have reached
- the start of the benchmark loop, and all will have finished before any thread
- exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
- API) As such, any global setup or teardown can be wrapped in a check against the thread
- index:
-
- ```c++
- static void BM_MultiThreaded(benchmark::State& state) {
- if (state.thread_index() == 0) {
- // Setup code here.
- }
- for (auto _ : state) {
- // Run the test as normal.
- }
- if (state.thread_index() == 0) {
- // Teardown code here.
- }
- }
- BENCHMARK(BM_MultiThreaded)->Threads(2);
- ```
-
- To run the benchmark across a range of thread counts, instead of `Threads`, use
- `ThreadRange`. This takes two parameters (`min_threads` and `max_threads`) and
- runs the benchmark once for values in the inclusive range. For example:
-
- ```c++
- BENCHMARK(BM_MultiThreaded)->ThreadRange(1, 8);
- ```
-
- will run `BM_MultiThreaded` with thread counts 1, 2, 4, and 8.
-
- If the benchmarked code itself uses threads and you want to compare it to
- single-threaded code, you may want to use real-time ("wallclock") measurements
- for latency comparisons:
-
- ```c++
- BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
- ```
-
- Without `UseRealTime`, CPU time is used by default.
-
- <a name="cpu-timers" />
-
- ## CPU Timers
-
- By default, the CPU timer only measures the time spent by the main thread.
- If the benchmark itself uses threads internally, this measurement may not
- be what you are looking for. Instead, there is a way to measure the total
- CPU usage of the process, by all the threads.
-
- ```c++
- void callee(int i);
-
- static void MyMain(int size) {
- #pragma omp parallel for
- for(int i = 0; i < size; i++)
- callee(i);
- }
-
- static void BM_OpenMP(benchmark::State& state) {
- for (auto _ : state)
- MyMain(state.range(0));
- }
-
- // Measure the time spent by the main thread, use it to decide for how long to
- // run the benchmark loop. Depending on the internal implementation detail may
- // measure to anywhere from near-zero (the overhead spent before/after work
- // handoff to worker thread[s]) to the whole single-thread time.
- BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
-
- // Measure the user-visible time, the wall clock (literally, the time that
- // has passed on the clock on the wall), use it to decide for how long to
- // run the benchmark loop. This will always be meaningful, an will match the
- // time spent by the main thread in single-threaded case, in general decreasing
- // with the number of internal threads doing the work.
- BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
-
- // Measure the total CPU consumption, use it to decide for how long to
- // run the benchmark loop. This will always measure to no less than the
- // time spent by the main thread in single-threaded case.
- BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
-
- // A mixture of the last two. Measure the total CPU consumption, but use the
- // wall clock to decide for how long to run the benchmark loop.
- BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
- ```
-
- ### Controlling Timers
-
- Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
- is measured. But sometimes, it is necessary to do some work inside of
- that loop, every iteration, but without counting that time to the benchmark time.
- That is possible, although it is not recommended, since it has high overhead.
-
- <!-- {% raw %} -->
- ```c++
- static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
- std::set<int> data;
- for (auto _ : state) {
- state.PauseTiming(); // Stop timers. They will not count until they are resumed.
- data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
- state.ResumeTiming(); // And resume timers. They are now counting again.
- // The rest will be measured.
- for (int j = 0; j < state.range(1); ++j)
- data.insert(RandomNumber());
- }
- }
- BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
- ```
- <!-- {% endraw %} -->
-
- <a name="manual-timing" />
-
- ## Manual Timing
-
- For benchmarking something for which neither CPU time nor real-time are
- correct or accurate enough, completely manual timing is supported using
- the `UseManualTime` function.
-
- When `UseManualTime` is used, the benchmarked code must call
- `SetIterationTime` once per iteration of the benchmark loop to
- report the manually measured time.
-
- An example use case for this is benchmarking GPU execution (e.g. OpenCL
- or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
- be accurately measured using CPU time or real-time. Instead, they can be
- measured accurately using a dedicated API, and these measurement results
- can be reported back with `SetIterationTime`.
-
- ```c++
- static void BM_ManualTiming(benchmark::State& state) {
- int microseconds = state.range(0);
- std::chrono::duration<double, std::micro> sleep_duration {
- static_cast<double>(microseconds)
- };
-
- for (auto _ : state) {
- auto start = std::chrono::high_resolution_clock::now();
- // Simulate some useful workload with a sleep
- std::this_thread::sleep_for(sleep_duration);
- auto end = std::chrono::high_resolution_clock::now();
-
- auto elapsed_seconds =
- std::chrono::duration_cast<std::chrono::duration<double>>(
- end - start);
-
- state.SetIterationTime(elapsed_seconds.count());
- }
- }
- BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
- ```
-
- <a name="setting-the-time-unit" />
-
- ## Setting the Time Unit
-
- If a benchmark runs a few milliseconds it may be hard to visually compare the
- measured times, since the output data is given in nanoseconds per default. In
- order to manually set the time unit, you can specify it manually:
-
- ```c++
- BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
- ```
-
- Additionally the default time unit can be set globally with the
- `--benchmark_time_unit={ns|us|ms|s}` command line argument. The argument only
- affects benchmarks where the time unit is not set explicitly.
-
- <a name="preventing-optimization" />
-
- ## Preventing Optimization
-
- To prevent a value or expression from being optimized away by the compiler
- the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
- functions can be used.
-
- ```c++
- static void BM_test(benchmark::State& state) {
- for (auto _ : state) {
- int x = 0;
- for (int i=0; i < 64; ++i) {
- benchmark::DoNotOptimize(x += i);
- }
- }
- }
- ```
-
- `DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
- memory or a register. For GNU based compilers it acts as read/write barrier
- for global memory. More specifically it forces the compiler to flush pending
- writes to memory and reload any other values as necessary.
-
- Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
- in any way. `<expr>` may even be removed entirely when the result is already
- known. For example:
-
- ```c++
- /* Example 1: `<expr>` is removed entirely. */
- int foo(int x) { return x + 42; }
- while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
-
- /* Example 2: Result of '<expr>' is only reused */
- int bar(int) __attribute__((const));
- while (...) DoNotOptimize(bar(0)); // Optimized to:
- // int __result__ = bar(0);
- // while (...) DoNotOptimize(__result__);
- ```
-
- The second tool for preventing optimizations is `ClobberMemory()`. In essence
- `ClobberMemory()` forces the compiler to perform all pending writes to global
- memory. Memory managed by block scope objects must be "escaped" using
- `DoNotOptimize(...)` before it can be clobbered. In the below example
- `ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
- away.
-
- ```c++
- static void BM_vector_push_back(benchmark::State& state) {
- for (auto _ : state) {
- std::vector<int> v;
- v.reserve(1);
- auto data = v.data(); // Allow v.data() to be clobbered. Pass as non-const
- benchmark::DoNotOptimize(data); // lvalue to avoid undesired compiler optimizations
- v.push_back(42);
- benchmark::ClobberMemory(); // Force 42 to be written to memory.
- }
- }
- ```
-
- Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
-
- <a name="reporting-statistics" />
-
- ## Statistics: Reporting the Mean, Median and Standard Deviation / Coefficient of variation of Repeated Benchmarks
-
- By default each benchmark is run once and that single result is reported.
- However benchmarks are often noisy and a single result may not be representative
- of the overall behavior. For this reason it's possible to repeatedly rerun the
- benchmark.
-
- The number of runs of each benchmark is specified globally by the
- `--benchmark_repetitions` flag or on a per benchmark basis by calling
- `Repetitions` on the registered benchmark object. When a benchmark is run more
- than once the mean, median, standard deviation and coefficient of variation
- of the runs will be reported.
-
- Additionally the `--benchmark_report_aggregates_only={true|false}`,
- `--benchmark_display_aggregates_only={true|false}` flags or
- `ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
- used to change how repeated tests are reported. By default the result of each
- repeated run is reported. When `report aggregates only` option is `true`,
- only the aggregates (i.e. mean, median, standard deviation and coefficient
- of variation, maybe complexity measurements if they were requested) of the runs
- is reported, to both the reporters - standard output (console), and the file.
- However when only the `display aggregates only` option is `true`,
- only the aggregates are displayed in the standard output, while the file
- output still contains everything.
- Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
- registered benchmark object overrides the value of the appropriate flag for that
- benchmark.
-
- <a name="custom-statistics" />
-
- ## Custom Statistics
-
- While having these aggregates is nice, this may not be enough for everyone.
- For example you may want to know what the largest observation is, e.g. because
- you have some real-time constraints. This is easy. The following code will
- specify a custom statistic to be calculated, defined by a lambda function.
-
- ```c++
- void BM_spin_empty(benchmark::State& state) {
- for (auto _ : state) {
- for (int x = 0; x < state.range(0); ++x) {
- benchmark::DoNotOptimize(x);
- }
- }
- }
-
- BENCHMARK(BM_spin_empty)
- ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
- return *(std::max_element(std::begin(v), std::end(v)));
- })
- ->Arg(512);
- ```
-
- While usually the statistics produce values in time units,
- you can also produce percentages:
-
- ```c++
- void BM_spin_empty(benchmark::State& state) {
- for (auto _ : state) {
- for (int x = 0; x < state.range(0); ++x) {
- benchmark::DoNotOptimize(x);
- }
- }
- }
-
- BENCHMARK(BM_spin_empty)
- ->ComputeStatistics("ratio", [](const std::vector<double>& v) -> double {
- return std::begin(v) / std::end(v);
- }, benchmark::StatisticUnit::kPercentage)
- ->Arg(512);
- ```
-
- <a name="memory-usage" />
-
- ## Memory Usage
-
- It's often useful to also track memory usage for benchmarks, alongside CPU
- performance. For this reason, benchmark offers the `RegisterMemoryManager`
- method that allows a custom `MemoryManager` to be injected.
-
- If set, the `MemoryManager::Start` and `MemoryManager::Stop` methods will be
- called at the start and end of benchmark runs to allow user code to fill out
- a report on the number of allocations, bytes used, etc.
-
- This data will then be reported alongside other performance data, currently
- only when using JSON output.
-
- <a name="using-register-benchmark" />
-
- ## Using RegisterBenchmark(name, fn, args...)
-
- The `RegisterBenchmark(name, func, args...)` function provides an alternative
- way to create and register benchmarks.
- `RegisterBenchmark(name, func, args...)` creates, registers, and returns a
- pointer to a new benchmark with the specified `name` that invokes
- `func(st, args...)` where `st` is a `benchmark::State` object.
-
- Unlike the `BENCHMARK` registration macros, which can only be used at the global
- scope, the `RegisterBenchmark` can be called anywhere. This allows for
- benchmark tests to be registered programmatically.
-
- Additionally `RegisterBenchmark` allows any callable object to be registered
- as a benchmark. Including capturing lambdas and function objects.
-
- For Example:
- ```c++
- auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
-
- int main(int argc, char** argv) {
- for (auto& test_input : { /* ... */ })
- benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
- benchmark::Initialize(&argc, argv);
- benchmark::RunSpecifiedBenchmarks();
- benchmark::Shutdown();
- }
- ```
-
- <a name="exiting-with-an-error" />
-
- ## Exiting with an Error
-
- When errors caused by external influences, such as file I/O and network
- communication, occur within a benchmark the
- `State::SkipWithError(const std::string& msg)` function can be used to skip that run
- of benchmark and report the error. Note that only future iterations of the
- `KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
- Users must explicitly exit the loop, otherwise all iterations will be performed.
- Users may explicitly return to exit the benchmark immediately.
-
- The `SkipWithError(...)` function may be used at any point within the benchmark,
- including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
- has been used, it is not required to reach the benchmark loop and one may return
- from the benchmark function early.
-
- For example:
-
- ```c++
- static void BM_test(benchmark::State& state) {
- auto resource = GetResource();
- if (!resource.good()) {
- state.SkipWithError("Resource is not good!");
- // KeepRunning() loop will not be entered.
- }
- while (state.KeepRunning()) {
- auto data = resource.read_data();
- if (!resource.good()) {
- state.SkipWithError("Failed to read data!");
- break; // Needed to skip the rest of the iteration.
- }
- do_stuff(data);
- }
- }
-
- static void BM_test_ranged_fo(benchmark::State & state) {
- auto resource = GetResource();
- if (!resource.good()) {
- state.SkipWithError("Resource is not good!");
- return; // Early return is allowed when SkipWithError() has been used.
- }
- for (auto _ : state) {
- auto data = resource.read_data();
- if (!resource.good()) {
- state.SkipWithError("Failed to read data!");
- break; // REQUIRED to prevent all further iterations.
- }
- do_stuff(data);
- }
- }
- ```
- <a name="a-faster-keep-running-loop" />
-
- ## A Faster KeepRunning Loop
-
- In C++11 mode, a ranged-based for loop should be used in preference to
- the `KeepRunning` loop for running the benchmarks. For example:
-
- ```c++
- static void BM_Fast(benchmark::State &state) {
- for (auto _ : state) {
- FastOperation();
- }
- }
- BENCHMARK(BM_Fast);
- ```
-
- The reason the ranged-for loop is faster than using `KeepRunning`, is
- because `KeepRunning` requires a memory load and store of the iteration count
- ever iteration, whereas the ranged-for variant is able to keep the iteration count
- in a register.
-
- For example, an empty inner loop of using the ranged-based for method looks like:
-
- ```asm
- # Loop Init
- mov rbx, qword ptr [r14 + 104]
- call benchmark::State::StartKeepRunning()
- test rbx, rbx
- je .LoopEnd
- .LoopHeader: # =>This Inner Loop Header: Depth=1
- add rbx, -1
- jne .LoopHeader
- .LoopEnd:
- ```
-
- Compared to an empty `KeepRunning` loop, which looks like:
-
- ```asm
- .LoopHeader: # in Loop: Header=BB0_3 Depth=1
- cmp byte ptr [rbx], 1
- jne .LoopInit
- .LoopBody: # =>This Inner Loop Header: Depth=1
- mov rax, qword ptr [rbx + 8]
- lea rcx, [rax + 1]
- mov qword ptr [rbx + 8], rcx
- cmp rax, qword ptr [rbx + 104]
- jb .LoopHeader
- jmp .LoopEnd
- .LoopInit:
- mov rdi, rbx
- call benchmark::State::StartKeepRunning()
- jmp .LoopBody
- .LoopEnd:
- ```
-
- Unless C++03 compatibility is required, the ranged-for variant of writing
- the benchmark loop should be preferred.
-
- <a name="disabling-cpu-frequency-scaling" />
-
- ## Disabling CPU Frequency Scaling
-
- If you see this error:
-
- ```
- ***WARNING*** CPU scaling is enabled, the benchmark real time measurements may
- be noisy and will incur extra overhead.
- ```
-
- you might want to disable the CPU frequency scaling while running the
- benchmark, as well as consider other ways to stabilize the performance of
- your system while benchmarking.
-
- See [Reducing Variance](reducing_variance.md) for more information.
|