You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

726 lines
23 KiB

  1. // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file. See the AUTHORS file for names of contributors.
  4. #include <sqlite3.h>
  5. #include <cstdio>
  6. #include <cstdlib>
  7. #include "util/histogram.h"
  8. #include "util/random.h"
  9. #include "util/testutil.h"
  10. // Comma-separated list of operations to run in the specified order
  11. // Actual benchmarks:
  12. //
  13. // fillseq -- write N values in sequential key order in async mode
  14. // fillseqsync -- write N/100 values in sequential key order in sync mode
  15. // fillseqbatch -- batch write N values in sequential key order in async mode
  16. // fillrandom -- write N values in random key order in async mode
  17. // fillrandsync -- write N/100 values in random key order in sync mode
  18. // fillrandbatch -- batch write N values in sequential key order in async mode
  19. // overwrite -- overwrite N values in random key order in async mode
  20. // fillrand100K -- write N/1000 100K values in random order in async mode
  21. // fillseq100K -- write N/1000 100K values in sequential order in async mode
  22. // readseq -- read N times sequentially
  23. // readrandom -- read N times in random order
  24. // readrand100K -- read N/1000 100K values in sequential order in async mode
  25. static const char* FLAGS_benchmarks =
  26. "fillseq,"
  27. "fillseqsync,"
  28. "fillseqbatch,"
  29. "fillrandom,"
  30. "fillrandsync,"
  31. "fillrandbatch,"
  32. "overwrite,"
  33. "overwritebatch,"
  34. "readrandom,"
  35. "readseq,"
  36. "fillrand100K,"
  37. "fillseq100K,"
  38. "readseq,"
  39. "readrand100K,";
  40. // Number of key/values to place in database
  41. static int FLAGS_num = 1000000;
  42. // Number of read operations to do. If negative, do FLAGS_num reads.
  43. static int FLAGS_reads = -1;
  44. // Size of each value
  45. static int FLAGS_value_size = 100;
  46. // Print histogram of operation timings
  47. static bool FLAGS_histogram = false;
  48. // Arrange to generate values that shrink to this fraction of
  49. // their original size after compression
  50. static double FLAGS_compression_ratio = 0.5;
  51. // Page size. Default 1 KB.
  52. static int FLAGS_page_size = 1024;
  53. // Number of pages.
  54. // Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
  55. static int FLAGS_num_pages = 4096;
  56. // If true, do not destroy the existing database. If you set this
  57. // flag and also specify a benchmark that wants a fresh database, that
  58. // benchmark will fail.
  59. static bool FLAGS_use_existing_db = false;
  60. // If true, the SQLite table has ROWIDs.
  61. static bool FLAGS_use_rowids = false;
  62. // If true, we allow batch writes to occur
  63. static bool FLAGS_transaction = true;
  64. // If true, we enable Write-Ahead Logging
  65. static bool FLAGS_WAL_enabled = true;
  66. // Use the db with the following name.
  67. static const char* FLAGS_db = nullptr;
  68. inline static void ExecErrorCheck(int status, char* err_msg) {
  69. if (status != SQLITE_OK) {
  70. std::fprintf(stderr, "SQL error: %s\n", err_msg);
  71. sqlite3_free(err_msg);
  72. std::exit(1);
  73. }
  74. }
  75. inline static void StepErrorCheck(int status) {
  76. if (status != SQLITE_DONE) {
  77. std::fprintf(stderr, "SQL step error: status = %d\n", status);
  78. std::exit(1);
  79. }
  80. }
  81. inline static void ErrorCheck(int status) {
  82. if (status != SQLITE_OK) {
  83. std::fprintf(stderr, "sqlite3 error: status = %d\n", status);
  84. std::exit(1);
  85. }
  86. }
  87. inline static void WalCheckpoint(sqlite3* db_) {
  88. // Flush all writes to disk
  89. if (FLAGS_WAL_enabled) {
  90. sqlite3_wal_checkpoint_v2(db_, nullptr, SQLITE_CHECKPOINT_FULL, nullptr,
  91. nullptr);
  92. }
  93. }
  94. namespace leveldb {
  95. // Helper for quickly generating random data.
  96. namespace {
  97. class RandomGenerator {
  98. private:
  99. std::string data_;
  100. int pos_;
  101. public:
  102. RandomGenerator() {
  103. // We use a limited amount of data over and over again and ensure
  104. // that it is larger than the compression window (32KB), and also
  105. // large enough to serve all typical value sizes we want to write.
  106. Random rnd(301);
  107. std::string piece;
  108. while (data_.size() < 1048576) {
  109. // Add a short fragment that is as compressible as specified
  110. // by FLAGS_compression_ratio.
  111. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
  112. data_.append(piece);
  113. }
  114. pos_ = 0;
  115. }
  116. Slice Generate(int len) {
  117. if (pos_ + len > data_.size()) {
  118. pos_ = 0;
  119. assert(len < data_.size());
  120. }
  121. pos_ += len;
  122. return Slice(data_.data() + pos_ - len, len);
  123. }
  124. };
  125. static Slice TrimSpace(Slice s) {
  126. int start = 0;
  127. while (start < s.size() && isspace(s[start])) {
  128. start++;
  129. }
  130. int limit = s.size();
  131. while (limit > start && isspace(s[limit - 1])) {
  132. limit--;
  133. }
  134. return Slice(s.data() + start, limit - start);
  135. }
  136. } // namespace
  137. class Benchmark {
  138. private:
  139. sqlite3* db_;
  140. int db_num_;
  141. int num_;
  142. int reads_;
  143. double start_;
  144. double last_op_finish_;
  145. int64_t bytes_;
  146. std::string message_;
  147. Histogram hist_;
  148. RandomGenerator gen_;
  149. Random rand_;
  150. // State kept for progress messages
  151. int done_;
  152. int next_report_; // When to report next
  153. void PrintHeader() {
  154. const int kKeySize = 16;
  155. PrintEnvironment();
  156. std::fprintf(stdout, "Keys: %d bytes each\n", kKeySize);
  157. std::fprintf(stdout, "Values: %d bytes each\n", FLAGS_value_size);
  158. std::fprintf(stdout, "Entries: %d\n", num_);
  159. std::fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
  160. ((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_) /
  161. 1048576.0));
  162. PrintWarnings();
  163. std::fprintf(stdout, "------------------------------------------------\n");
  164. }
  165. void PrintWarnings() {
  166. #if defined(__GNUC__) && !defined(__OPTIMIZE__)
  167. std::fprintf(
  168. stdout,
  169. "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
  170. #endif
  171. #ifndef NDEBUG
  172. std::fprintf(
  173. stdout,
  174. "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
  175. #endif
  176. }
  177. void PrintEnvironment() {
  178. std::fprintf(stderr, "SQLite: version %s\n", SQLITE_VERSION);
  179. #if defined(__linux)
  180. time_t now = time(nullptr);
  181. std::fprintf(stderr, "Date: %s",
  182. ctime(&now)); // ctime() adds newline
  183. FILE* cpuinfo = std::fopen("/proc/cpuinfo", "r");
  184. if (cpuinfo != nullptr) {
  185. char line[1000];
  186. int num_cpus = 0;
  187. std::string cpu_type;
  188. std::string cache_size;
  189. while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
  190. const char* sep = strchr(line, ':');
  191. if (sep == nullptr) {
  192. continue;
  193. }
  194. Slice key = TrimSpace(Slice(line, sep - 1 - line));
  195. Slice val = TrimSpace(Slice(sep + 1));
  196. if (key == "model name") {
  197. ++num_cpus;
  198. cpu_type = val.ToString();
  199. } else if (key == "cache size") {
  200. cache_size = val.ToString();
  201. }
  202. }
  203. std::fclose(cpuinfo);
  204. std::fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
  205. std::fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
  206. }
  207. #endif
  208. }
  209. void Start() {
  210. start_ = Env::Default()->NowMicros() * 1e-6;
  211. bytes_ = 0;
  212. message_.clear();
  213. last_op_finish_ = start_;
  214. hist_.Clear();
  215. done_ = 0;
  216. next_report_ = 100;
  217. }
  218. void FinishedSingleOp() {
  219. if (FLAGS_histogram) {
  220. double now = Env::Default()->NowMicros() * 1e-6;
  221. double micros = (now - last_op_finish_) * 1e6;
  222. hist_.Add(micros);
  223. if (micros > 20000) {
  224. std::fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
  225. std::fflush(stderr);
  226. }
  227. last_op_finish_ = now;
  228. }
  229. done_++;
  230. if (done_ >= next_report_) {
  231. if (next_report_ < 1000)
  232. next_report_ += 100;
  233. else if (next_report_ < 5000)
  234. next_report_ += 500;
  235. else if (next_report_ < 10000)
  236. next_report_ += 1000;
  237. else if (next_report_ < 50000)
  238. next_report_ += 5000;
  239. else if (next_report_ < 100000)
  240. next_report_ += 10000;
  241. else if (next_report_ < 500000)
  242. next_report_ += 50000;
  243. else
  244. next_report_ += 100000;
  245. std::fprintf(stderr, "... finished %d ops%30s\r", done_, "");
  246. std::fflush(stderr);
  247. }
  248. }
  249. void Stop(const Slice& name) {
  250. double finish = Env::Default()->NowMicros() * 1e-6;
  251. // Pretend at least one op was done in case we are running a benchmark
  252. // that does not call FinishedSingleOp().
  253. if (done_ < 1) done_ = 1;
  254. if (bytes_ > 0) {
  255. char rate[100];
  256. std::snprintf(rate, sizeof(rate), "%6.1f MB/s",
  257. (bytes_ / 1048576.0) / (finish - start_));
  258. if (!message_.empty()) {
  259. message_ = std::string(rate) + " " + message_;
  260. } else {
  261. message_ = rate;
  262. }
  263. }
  264. std::fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
  265. name.ToString().c_str(), (finish - start_) * 1e6 / done_,
  266. (message_.empty() ? "" : " "), message_.c_str());
  267. if (FLAGS_histogram) {
  268. std::fprintf(stdout, "Microseconds per op:\n%s\n",
  269. hist_.ToString().c_str());
  270. }
  271. std::fflush(stdout);
  272. }
  273. public:
  274. enum Order { SEQUENTIAL, RANDOM };
  275. enum DBState { FRESH, EXISTING };
  276. Benchmark()
  277. : db_(nullptr),
  278. db_num_(0),
  279. num_(FLAGS_num),
  280. reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
  281. bytes_(0),
  282. rand_(301) {
  283. std::vector<std::string> files;
  284. std::string test_dir;
  285. Env::Default()->GetTestDirectory(&test_dir);
  286. Env::Default()->GetChildren(test_dir, &files);
  287. if (!FLAGS_use_existing_db) {
  288. for (int i = 0; i < files.size(); i++) {
  289. if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
  290. std::string file_name(test_dir);
  291. file_name += "/";
  292. file_name += files[i];
  293. Env::Default()->RemoveFile(file_name.c_str());
  294. }
  295. }
  296. }
  297. }
  298. ~Benchmark() {
  299. int status = sqlite3_close(db_);
  300. ErrorCheck(status);
  301. }
  302. void Run() {
  303. PrintHeader();
  304. Open();
  305. const char* benchmarks = FLAGS_benchmarks;
  306. while (benchmarks != nullptr) {
  307. const char* sep = strchr(benchmarks, ',');
  308. Slice name;
  309. if (sep == nullptr) {
  310. name = benchmarks;
  311. benchmarks = nullptr;
  312. } else {
  313. name = Slice(benchmarks, sep - benchmarks);
  314. benchmarks = sep + 1;
  315. }
  316. bytes_ = 0;
  317. Start();
  318. bool known = true;
  319. bool write_sync = false;
  320. if (name == Slice("fillseq")) {
  321. Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
  322. WalCheckpoint(db_);
  323. } else if (name == Slice("fillseqbatch")) {
  324. Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
  325. WalCheckpoint(db_);
  326. } else if (name == Slice("fillrandom")) {
  327. Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
  328. WalCheckpoint(db_);
  329. } else if (name == Slice("fillrandbatch")) {
  330. Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
  331. WalCheckpoint(db_);
  332. } else if (name == Slice("overwrite")) {
  333. Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
  334. WalCheckpoint(db_);
  335. } else if (name == Slice("overwritebatch")) {
  336. Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
  337. WalCheckpoint(db_);
  338. } else if (name == Slice("fillrandsync")) {
  339. write_sync = true;
  340. Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
  341. WalCheckpoint(db_);
  342. } else if (name == Slice("fillseqsync")) {
  343. write_sync = true;
  344. Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
  345. WalCheckpoint(db_);
  346. } else if (name == Slice("fillrand100K")) {
  347. Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
  348. WalCheckpoint(db_);
  349. } else if (name == Slice("fillseq100K")) {
  350. Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
  351. WalCheckpoint(db_);
  352. } else if (name == Slice("readseq")) {
  353. ReadSequential();
  354. } else if (name == Slice("readrandom")) {
  355. Read(RANDOM, 1);
  356. } else if (name == Slice("readrand100K")) {
  357. int n = reads_;
  358. reads_ /= 1000;
  359. Read(RANDOM, 1);
  360. reads_ = n;
  361. } else {
  362. known = false;
  363. if (name != Slice()) { // No error message for empty name
  364. std::fprintf(stderr, "unknown benchmark '%s'\n",
  365. name.ToString().c_str());
  366. }
  367. }
  368. if (known) {
  369. Stop(name);
  370. }
  371. }
  372. }
  373. void Open() {
  374. assert(db_ == nullptr);
  375. int status;
  376. char file_name[100];
  377. char* err_msg = nullptr;
  378. db_num_++;
  379. // Open database
  380. std::string tmp_dir;
  381. Env::Default()->GetTestDirectory(&tmp_dir);
  382. std::snprintf(file_name, sizeof(file_name), "%s/dbbench_sqlite3-%d.db",
  383. tmp_dir.c_str(), db_num_);
  384. status = sqlite3_open(file_name, &db_);
  385. if (status) {
  386. std::fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
  387. std::exit(1);
  388. }
  389. // Change SQLite cache size
  390. char cache_size[100];
  391. std::snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
  392. FLAGS_num_pages);
  393. status = sqlite3_exec(db_, cache_size, nullptr, nullptr, &err_msg);
  394. ExecErrorCheck(status, err_msg);
  395. // FLAGS_page_size is defaulted to 1024
  396. if (FLAGS_page_size != 1024) {
  397. char page_size[100];
  398. std::snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
  399. FLAGS_page_size);
  400. status = sqlite3_exec(db_, page_size, nullptr, nullptr, &err_msg);
  401. ExecErrorCheck(status, err_msg);
  402. }
  403. // Change journal mode to WAL if WAL enabled flag is on
  404. if (FLAGS_WAL_enabled) {
  405. std::string WAL_stmt = "PRAGMA journal_mode = WAL";
  406. // LevelDB's default cache size is a combined 4 MB
  407. std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
  408. status = sqlite3_exec(db_, WAL_stmt.c_str(), nullptr, nullptr, &err_msg);
  409. ExecErrorCheck(status, err_msg);
  410. status =
  411. sqlite3_exec(db_, WAL_checkpoint.c_str(), nullptr, nullptr, &err_msg);
  412. ExecErrorCheck(status, err_msg);
  413. }
  414. // Change locking mode to exclusive and create tables/index for database
  415. std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
  416. std::string create_stmt =
  417. "CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
  418. if (!FLAGS_use_rowids) create_stmt += " WITHOUT ROWID";
  419. std::string stmt_array[] = {locking_stmt, create_stmt};
  420. int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
  421. for (int i = 0; i < stmt_array_length; i++) {
  422. status =
  423. sqlite3_exec(db_, stmt_array[i].c_str(), nullptr, nullptr, &err_msg);
  424. ExecErrorCheck(status, err_msg);
  425. }
  426. }
  427. void Write(bool write_sync, Order order, DBState state, int num_entries,
  428. int value_size, int entries_per_batch) {
  429. // Create new database if state == FRESH
  430. if (state == FRESH) {
  431. if (FLAGS_use_existing_db) {
  432. message_ = "skipping (--use_existing_db is true)";
  433. return;
  434. }
  435. sqlite3_close(db_);
  436. db_ = nullptr;
  437. Open();
  438. Start();
  439. }
  440. if (num_entries != num_) {
  441. char msg[100];
  442. std::snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
  443. message_ = msg;
  444. }
  445. char* err_msg = nullptr;
  446. int status;
  447. sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
  448. std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
  449. std::string begin_trans_str = "BEGIN TRANSACTION;";
  450. std::string end_trans_str = "END TRANSACTION;";
  451. // Check for synchronous flag in options
  452. std::string sync_stmt =
  453. (write_sync) ? "PRAGMA synchronous = FULL" : "PRAGMA synchronous = OFF";
  454. status = sqlite3_exec(db_, sync_stmt.c_str(), nullptr, nullptr, &err_msg);
  455. ExecErrorCheck(status, err_msg);
  456. // Preparing sqlite3 statements
  457. status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1, &replace_stmt,
  458. nullptr);
  459. ErrorCheck(status);
  460. status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
  461. &begin_trans_stmt, nullptr);
  462. ErrorCheck(status);
  463. status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
  464. nullptr);
  465. ErrorCheck(status);
  466. bool transaction = (entries_per_batch > 1);
  467. for (int i = 0; i < num_entries; i += entries_per_batch) {
  468. // Begin write transaction
  469. if (FLAGS_transaction && transaction) {
  470. status = sqlite3_step(begin_trans_stmt);
  471. StepErrorCheck(status);
  472. status = sqlite3_reset(begin_trans_stmt);
  473. ErrorCheck(status);
  474. }
  475. // Create and execute SQL statements
  476. for (int j = 0; j < entries_per_batch; j++) {
  477. const char* value = gen_.Generate(value_size).data();
  478. // Create values for key-value pair
  479. const int k =
  480. (order == SEQUENTIAL) ? i + j : (rand_.Next() % num_entries);
  481. char key[100];
  482. std::snprintf(key, sizeof(key), "%016d", k);
  483. // Bind KV values into replace_stmt
  484. status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
  485. ErrorCheck(status);
  486. status = sqlite3_bind_blob(replace_stmt, 2, value, value_size,
  487. SQLITE_STATIC);
  488. ErrorCheck(status);
  489. // Execute replace_stmt
  490. bytes_ += value_size + strlen(key);
  491. status = sqlite3_step(replace_stmt);
  492. StepErrorCheck(status);
  493. // Reset SQLite statement for another use
  494. status = sqlite3_clear_bindings(replace_stmt);
  495. ErrorCheck(status);
  496. status = sqlite3_reset(replace_stmt);
  497. ErrorCheck(status);
  498. FinishedSingleOp();
  499. }
  500. // End write transaction
  501. if (FLAGS_transaction && transaction) {
  502. status = sqlite3_step(end_trans_stmt);
  503. StepErrorCheck(status);
  504. status = sqlite3_reset(end_trans_stmt);
  505. ErrorCheck(status);
  506. }
  507. }
  508. status = sqlite3_finalize(replace_stmt);
  509. ErrorCheck(status);
  510. status = sqlite3_finalize(begin_trans_stmt);
  511. ErrorCheck(status);
  512. status = sqlite3_finalize(end_trans_stmt);
  513. ErrorCheck(status);
  514. }
  515. void Read(Order order, int entries_per_batch) {
  516. int status;
  517. sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;
  518. std::string read_str = "SELECT * FROM test WHERE key = ?";
  519. std::string begin_trans_str = "BEGIN TRANSACTION;";
  520. std::string end_trans_str = "END TRANSACTION;";
  521. // Preparing sqlite3 statements
  522. status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
  523. &begin_trans_stmt, nullptr);
  524. ErrorCheck(status);
  525. status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
  526. nullptr);
  527. ErrorCheck(status);
  528. status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, nullptr);
  529. ErrorCheck(status);
  530. bool transaction = (entries_per_batch > 1);
  531. for (int i = 0; i < reads_; i += entries_per_batch) {
  532. // Begin read transaction
  533. if (FLAGS_transaction && transaction) {
  534. status = sqlite3_step(begin_trans_stmt);
  535. StepErrorCheck(status);
  536. status = sqlite3_reset(begin_trans_stmt);
  537. ErrorCheck(status);
  538. }
  539. // Create and execute SQL statements
  540. for (int j = 0; j < entries_per_batch; j++) {
  541. // Create key value
  542. char key[100];
  543. int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
  544. std::snprintf(key, sizeof(key), "%016d", k);
  545. // Bind key value into read_stmt
  546. status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
  547. ErrorCheck(status);
  548. // Execute read statement
  549. while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) {
  550. }
  551. StepErrorCheck(status);
  552. // Reset SQLite statement for another use
  553. status = sqlite3_clear_bindings(read_stmt);
  554. ErrorCheck(status);
  555. status = sqlite3_reset(read_stmt);
  556. ErrorCheck(status);
  557. FinishedSingleOp();
  558. }
  559. // End read transaction
  560. if (FLAGS_transaction && transaction) {
  561. status = sqlite3_step(end_trans_stmt);
  562. StepErrorCheck(status);
  563. status = sqlite3_reset(end_trans_stmt);
  564. ErrorCheck(status);
  565. }
  566. }
  567. status = sqlite3_finalize(read_stmt);
  568. ErrorCheck(status);
  569. status = sqlite3_finalize(begin_trans_stmt);
  570. ErrorCheck(status);
  571. status = sqlite3_finalize(end_trans_stmt);
  572. ErrorCheck(status);
  573. }
  574. void ReadSequential() {
  575. int status;
  576. sqlite3_stmt* pStmt;
  577. std::string read_str = "SELECT * FROM test ORDER BY key";
  578. status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, nullptr);
  579. ErrorCheck(status);
  580. for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
  581. bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
  582. FinishedSingleOp();
  583. }
  584. status = sqlite3_finalize(pStmt);
  585. ErrorCheck(status);
  586. }
  587. };
  588. } // namespace leveldb
  589. int main(int argc, char** argv) {
  590. std::string default_db_path;
  591. for (int i = 1; i < argc; i++) {
  592. double d;
  593. int n;
  594. char junk;
  595. if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
  596. FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
  597. } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
  598. (n == 0 || n == 1)) {
  599. FLAGS_histogram = n;
  600. } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
  601. FLAGS_compression_ratio = d;
  602. } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
  603. (n == 0 || n == 1)) {
  604. FLAGS_use_existing_db = n;
  605. } else if (sscanf(argv[i], "--use_rowids=%d%c", &n, &junk) == 1 &&
  606. (n == 0 || n == 1)) {
  607. FLAGS_use_rowids = n;
  608. } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
  609. FLAGS_num = n;
  610. } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
  611. FLAGS_reads = n;
  612. } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
  613. FLAGS_value_size = n;
  614. } else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
  615. FLAGS_transaction = false;
  616. } else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
  617. FLAGS_page_size = n;
  618. } else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
  619. FLAGS_num_pages = n;
  620. } else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
  621. (n == 0 || n == 1)) {
  622. FLAGS_WAL_enabled = n;
  623. } else if (strncmp(argv[i], "--db=", 5) == 0) {
  624. FLAGS_db = argv[i] + 5;
  625. } else {
  626. std::fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
  627. std::exit(1);
  628. }
  629. }
  630. // Choose a location for the test database if none given with --db=<path>
  631. if (FLAGS_db == nullptr) {
  632. leveldb::Env::Default()->GetTestDirectory(&default_db_path);
  633. default_db_path += "/dbbench";
  634. FLAGS_db = default_db_path.c_str();
  635. }
  636. leveldb::Benchmark benchmark;
  637. benchmark.Run();
  638. return 0;
  639. }