作者: 谢瑞阳 10225101483 徐翔宇 10225101535
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
 
 

318 rindas
8.8 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_iter.h"
#include "db/db_impl.h"
#include "db/dbformat.h"
#include "db/filename.h"
#include "leveldb/env.h"
#include "leveldb/iterator.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/random.h"
namespace leveldb {
#if 0
static void DumpInternalIter(Iterator* iter) {
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey k;
if (!ParseInternalKey(iter->key(), &k)) {
std::fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str());
} else {
std::fprintf(stderr, "@ '%s'\n", k.DebugString().c_str());
}
}
}
#endif
namespace {
// Memtables and sstables that make the DB representation contain
// (userkey,seq,type) => uservalue entries. DBIter
// combines multiple entries for the same userkey found in the DB
// representation into a single entry while accounting for sequence
// numbers, deletion markers, overwrites, etc.
class DBIter : public Iterator {
public:
// Which direction is the iterator currently moving?
// (1) When moving forward, the internal iterator is positioned at
// the exact entry that yields this->key(), this->value()
// (2) When moving backwards, the internal iterator is positioned
// just before all entries whose user key == this->key().
enum Direction { kForward, kReverse };
DBIter(DBImpl* db, const Comparator* cmp, Iterator* iter, SequenceNumber s,
uint32_t seed)
: db_(db),
user_comparator_(cmp),
iter_(iter),
sequence_(s),
direction_(kForward),
valid_(false),
rnd_(seed),
bytes_until_read_sampling_(RandomCompactionPeriod()) {}
DBIter(const DBIter&) = delete;
DBIter& operator=(const DBIter&) = delete;
~DBIter() override { delete iter_; }
bool Valid() const override { return valid_; }
Slice key() const override {
assert(valid_);
return (direction_ == kForward) ? ExtractUserKey(iter_->key()) : saved_key_;
}
Slice value() const override {
assert(valid_);
return (direction_ == kForward) ? iter_->value() : saved_value_;
}
Status status() const override {
if (status_.ok()) {
return iter_->status();
} else {
return status_;
}
}
void Next() override;
void Prev() override;
void Seek(const Slice& target) override;
void SeekToFirst() override;
void SeekToLast() override;
private:
void FindNextUserEntry(bool skipping, std::string* skip);
void FindPrevUserEntry();
bool ParseKey(ParsedInternalKey* key);
inline void SaveKey(const Slice& k, std::string* dst) {
dst->assign(k.data(), k.size());
}
inline void ClearSavedValue() {
if (saved_value_.capacity() > 1048576) {
std::string empty;
swap(empty, saved_value_);
} else {
saved_value_.clear();
}
}
// Picks the number of bytes that can be read until a compaction is scheduled.
size_t RandomCompactionPeriod() {
return rnd_.Uniform(2 * config::kReadBytesPeriod);
}
DBImpl* db_;
const Comparator* const user_comparator_;
Iterator* const iter_;
SequenceNumber const sequence_;
Status status_;
std::string saved_key_; // == current key when direction_==kReverse
std::string saved_value_; // == current raw value when direction_==kReverse
Direction direction_;
bool valid_;
Random rnd_;
size_t bytes_until_read_sampling_;
};
inline bool DBIter::ParseKey(ParsedInternalKey* ikey) {
Slice k = iter_->key();
size_t bytes_read = k.size() + iter_->value().size();
while (bytes_until_read_sampling_ < bytes_read) {
bytes_until_read_sampling_ += RandomCompactionPeriod();
db_->RecordReadSample(k);
}
assert(bytes_until_read_sampling_ >= bytes_read);
bytes_until_read_sampling_ -= bytes_read;
if (!ParseInternalKey(k, ikey)) {
status_ = Status::Corruption("corrupted internal key in DBIter");
return false;
} else {
return true;
}
}
void DBIter::Next() {
assert(valid_);
if (direction_ == kReverse) { // Switch directions?
direction_ = kForward;
// iter_ is pointing just before the entries for this->key(),
// so advance into the range of entries for this->key() and then
// use the normal skipping code below.
if (!iter_->Valid()) {
iter_->SeekToFirst();
} else {
iter_->Next();
}
if (!iter_->Valid()) {
valid_ = false;
saved_key_.clear();
return;
}
// saved_key_ already contains the key to skip past.
} else {
// Store in saved_key_ the current key so we skip it below.
SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
// iter_ is pointing to current key. We can now safely move to the next to
// avoid checking current key.
iter_->Next();
if (!iter_->Valid()) {
valid_ = false;
saved_key_.clear();
return;
}
}
FindNextUserEntry(true, &saved_key_);
}
void DBIter::FindNextUserEntry(bool skipping, std::string* skip) {
// Loop until we hit an acceptable entry to yield
assert(iter_->Valid());
assert(direction_ == kForward);
do {
ParsedInternalKey ikey;
if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
switch (ikey.type) {
case kTypeDeletion:
// Arrange to skip all upcoming entries for this key since
// they are hidden by this deletion.
SaveKey(ikey.user_key, skip);
skipping = true;
break;
case kTypeValue:
if (skipping &&
user_comparator_->Compare(ikey.user_key, *skip) <= 0) {
// Entry hidden
} else {
valid_ = true;
saved_key_.clear();
return;
}
break;
}
}
iter_->Next();
} while (iter_->Valid());
saved_key_.clear();
valid_ = false;
}
void DBIter::Prev() {
assert(valid_);
if (direction_ == kForward) { // Switch directions?
// iter_ is pointing at the current entry. Scan backwards until
// the key changes so we can use the normal reverse scanning code.
assert(iter_->Valid()); // Otherwise valid_ would have been false
SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
while (true) {
iter_->Prev();
if (!iter_->Valid()) {
valid_ = false;
saved_key_.clear();
ClearSavedValue();
return;
}
if (user_comparator_->Compare(ExtractUserKey(iter_->key()), saved_key_) <
0) {
break;
}
}
direction_ = kReverse;
}
FindPrevUserEntry();
}
void DBIter::FindPrevUserEntry() {
assert(direction_ == kReverse);
ValueType value_type = kTypeDeletion;
if (iter_->Valid()) {
do {
ParsedInternalKey ikey;
if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
if ((value_type != kTypeDeletion) &&
user_comparator_->Compare(ikey.user_key, saved_key_) < 0) {
// We encountered a non-deleted value in entries for previous keys,
break;
}
value_type = ikey.type;
if (value_type == kTypeDeletion) {
saved_key_.clear();
ClearSavedValue();
} else {
Slice raw_value = iter_->value();
if (saved_value_.capacity() > raw_value.size() + 1048576) {
std::string empty;
swap(empty, saved_value_);
}
SaveKey(ExtractUserKey(iter_->key()), &saved_key_);
saved_value_.assign(raw_value.data(), raw_value.size());
}
}
iter_->Prev();
} while (iter_->Valid());
}
if (value_type == kTypeDeletion) {
// End
valid_ = false;
saved_key_.clear();
ClearSavedValue();
direction_ = kForward;
} else {
valid_ = true;
}
}
void DBIter::Seek(const Slice& target) {
direction_ = kForward;
ClearSavedValue();
saved_key_.clear();
AppendInternalKey(&saved_key_,
ParsedInternalKey(target, sequence_, kValueTypeForSeek));
iter_->Seek(saved_key_);
if (iter_->Valid()) {
FindNextUserEntry(false, &saved_key_ /* temporary storage */);
} else {
valid_ = false;
}
}
void DBIter::SeekToFirst() {
direction_ = kForward;
ClearSavedValue();
iter_->SeekToFirst();
if (iter_->Valid()) {
FindNextUserEntry(false, &saved_key_ /* temporary storage */);
} else {
valid_ = false;
}
}
void DBIter::SeekToLast() {
direction_ = kReverse;
ClearSavedValue();
iter_->SeekToLast();
FindPrevUserEntry();
}
} // anonymous namespace
Iterator* NewDBIterator(DBImpl* db, const Comparator* user_key_comparator,
Iterator* internal_iter, SequenceNumber sequence,
uint32_t seed) {
return new DBIter(db, user_key_comparator, internal_iter, sequence, seed);
}
} // namespace leveldb