// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/version_set.h" #include #include #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/table_cache.h" #include "leveldb/env.h" #include "leveldb/table_builder.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/logging.h" namespace leveldb { static size_t TargetFileSize(const Options* options) { return options->max_file_size; } // Maximum bytes of overlaps in grandparent (i.e., level+2) before we // stop building a single file in a level->level+1 compaction. static int64_t MaxGrandParentOverlapBytes(const Options* options) { return 10 * TargetFileSize(options); } // Maximum number of bytes in all compacted files. We avoid expanding // the lower level file set of a compaction if it would make the // total compaction cover more than this many bytes. static int64_t ExpandedCompactionByteSizeLimit(const Options* options) { return 25 * TargetFileSize(options); } static double MaxBytesForLevel(const Options* options, int level) { // Note: the result for level zero is not really used since we set // the level-0 compaction threshold based on number of files. // Result for both level-0 and level-1 double result = 10. * 1048576.0; while (level > 1) { result *= 10; level--; } return result; } static uint64_t MaxFileSizeForLevel(const Options* options, int level) { // We could vary per level to reduce number of files? return TargetFileSize(options); } static int64_t TotalFileSize(const std::vector& files) { int64_t sum = 0; for (size_t i = 0; i < files.size(); i++) { sum += files[i]->file_size; } return sum; } Version::~Version() { assert(refs_ == 0); // Remove from linked list prev_->next_ = next_; next_->prev_ = prev_; // Drop references to files for (int level = 0; level < config::kNumLevels; level++) { for (size_t i = 0; i < files_[level].size(); i++) { FileMetaData* f = files_[level][i]; assert(f->refs > 0); f->refs--; if (f->refs <= 0) { delete f; } } } } int FindFile(const InternalKeyComparator& icmp, const std::vector& files, const Slice& key) { uint32_t left = 0; uint32_t right = files.size(); while (left < right) { uint32_t mid = (left + right) / 2; const FileMetaData* f = files[mid]; if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) { // Key at "mid.largest" is < "target". Therefore all // files at or before "mid" are uninteresting. left = mid + 1; } else { // Key at "mid.largest" is >= "target". Therefore all files // after "mid" are uninteresting. right = mid; } } return right; } static bool AfterFile(const Comparator* ucmp, const Slice* user_key, const FileMetaData* f) { // null user_key occurs before all keys and is therefore never after *f return (user_key != nullptr && ucmp->Compare(*user_key, f->largest.user_key()) > 0); } static bool BeforeFile(const Comparator* ucmp, const Slice* user_key, const FileMetaData* f) { // null user_key occurs after all keys and is therefore never before *f return (user_key != nullptr && ucmp->Compare(*user_key, f->smallest.user_key()) < 0); } bool SomeFileOverlapsRange(const InternalKeyComparator& icmp, bool disjoint_sorted_files, const std::vector& files, const Slice* smallest_user_key, const Slice* largest_user_key) { const Comparator* ucmp = icmp.user_comparator(); if (!disjoint_sorted_files) { // Need to check against all files for (size_t i = 0; i < files.size(); i++) { const FileMetaData* f = files[i]; if (AfterFile(ucmp, smallest_user_key, f) || BeforeFile(ucmp, largest_user_key, f)) { // No overlap } else { return true; // Overlap } } return false; } // Binary search over file list uint32_t index = 0; if (smallest_user_key != nullptr) { // Find the earliest possible internal key for smallest_user_key InternalKey small_key(*smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); index = FindFile(icmp, files, small_key.Encode()); } if (index >= files.size()) { // beginning of range is after all files, so no overlap. return false; } return !BeforeFile(ucmp, largest_user_key, files[index]); } // An internal iterator. For a given version/level pair, yields // information about the files in the level. For a given entry, key() // is the largest key that occurs in the file, and value() is an // 16-byte value containing the file number and file size, both // encoded using EncodeFixed64. class Version::LevelFileNumIterator : public Iterator { public: LevelFileNumIterator(const InternalKeyComparator& icmp, const std::vector* flist) : icmp_(icmp), flist_(flist), index_(flist->size()) { // Marks as invalid } bool Valid() const override { return index_ < flist_->size(); } void Seek(const Slice& target) override { index_ = FindFile(icmp_, *flist_, target); } void SeekToFirst() override { index_ = 0; } void SeekToLast() override { index_ = flist_->empty() ? 0 : flist_->size() - 1; } void Next() override { assert(Valid()); index_++; } void Prev() override { assert(Valid()); if (index_ == 0) { index_ = flist_->size(); // Marks as invalid } else { index_--; } } Slice key() const override { assert(Valid()); return (*flist_)[index_]->largest.Encode(); } Slice value() const override { assert(Valid()); EncodeFixed64(value_buf_, (*flist_)[index_]->number); EncodeFixed64(value_buf_ + 8, (*flist_)[index_]->file_size); return Slice(value_buf_, sizeof(value_buf_)); } Status status() const override { return Status::OK(); } private: const InternalKeyComparator icmp_; const std::vector* const flist_; uint32_t index_; // Backing store for value(). Holds the file number and size. mutable char value_buf_[16]; }; static Iterator* GetFileIterator(void* arg, const ReadOptions& options, const Slice& file_value) { TableCache* cache = reinterpret_cast(arg); if (file_value.size() != 16) { return NewErrorIterator( Status::Corruption("FileReader invoked with unexpected value")); } else { return cache->NewIterator(options, DecodeFixed64(file_value.data()), DecodeFixed64(file_value.data() + 8)); } } Iterator* Version::NewConcatenatingIterator(const ReadOptions& options, int level) const { return NewTwoLevelIterator( new LevelFileNumIterator(vset_->icmp_, &files_[level]), &GetFileIterator, vset_->table_cache_, options); } void Version::AddIterators(const ReadOptions& options, std::vector* iters) { // Merge all level zero files together since they may overlap for (size_t i = 0; i < files_[0].size(); i++) { iters->push_back(vset_->table_cache_->NewIterator( options, files_[0][i]->number, files_[0][i]->file_size)); } // For levels > 0, we can use a concatenating iterator that sequentially // walks through the non-overlapping files in the level, opening them // lazily. for (int level = 1; level < config::kNumLevels; level++) { if (!files_[level].empty()) { iters->push_back(NewConcatenatingIterator(options, level)); } } } // Callback from TableCache::Get() namespace { enum SaverState { kNotFound, kFound, kDeleted, kCorrupt, }; struct Saver { SaverState state; const Comparator* ucmp; Slice user_key; std::string* value; }; } // namespace static void SaveValue(void* arg, const Slice& ikey, const Slice& v) { Saver* s = reinterpret_cast(arg); ParsedInternalKey parsed_key; if (!ParseInternalKey(ikey, &parsed_key)) { s->state = kCorrupt; } else { if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { if(parsed_key.type == kTypeValue){ time_t now = time(nullptr); uint64_t ttl=*(uint64_t*)(v.data()+v.size()-8); if(ttl < static_cast(now))return; } s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted; if (s->state == kFound) { s->value->assign(v.data(), v.size()-8); } } } } static bool NewestFirst(FileMetaData* a, FileMetaData* b) { return a->number > b->number; } void Version::ForEachOverlapping(Slice user_key, Slice internal_key, void* arg, bool (*func)(void*, int, FileMetaData*)) { const Comparator* ucmp = vset_->icmp_.user_comparator(); // Search level-0 in order from newest to oldest. std::vector tmp; tmp.reserve(files_[0].size()); for (uint32_t i = 0; i < files_[0].size(); i++) { FileMetaData* f = files_[0][i]; if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 && ucmp->Compare(user_key, f->largest.user_key()) <= 0) { tmp.push_back(f); } } if (!tmp.empty()) { std::sort(tmp.begin(), tmp.end(), NewestFirst); for (uint32_t i = 0; i < tmp.size(); i++) { if (!(*func)(arg, 0, tmp[i])) { return; } } } // Search other levels. for (int level = 1; level < config::kNumLevels; level++) { size_t num_files = files_[level].size(); if (num_files == 0) continue; // Binary search to find earliest index whose largest key >= internal_key. uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key); if (index < num_files) { FileMetaData* f = files_[level][index]; if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) { // All of "f" is past any data for user_key } else { if (!(*func)(arg, level, f)) { return; } } } } } Status Version::Get(const ReadOptions& options, const LookupKey& k, std::string* value, GetStats* stats) { stats->seek_file = nullptr; stats->seek_file_level = -1; struct State { Saver saver; GetStats* stats; const ReadOptions* options; Slice ikey; FileMetaData* last_file_read; int last_file_read_level; VersionSet* vset; Status s; bool found; static bool Match(void* arg, int level, FileMetaData* f) { State* state = reinterpret_cast(arg); if (state->stats->seek_file == nullptr && state->last_file_read != nullptr) { // We have had more than one seek for this read. Charge the 1st file. state->stats->seek_file = state->last_file_read; state->stats->seek_file_level = state->last_file_read_level; } state->last_file_read = f; state->last_file_read_level = level; state->s = state->vset->table_cache_->Get(*state->options, f->number, f->file_size, state->ikey, &state->saver, SaveValue); if (!state->s.ok()) { state->found = true; return false; } switch (state->saver.state) { case kNotFound: return true; // Keep searching in other files case kFound: state->found = true; return false; case kDeleted: return false; case kCorrupt: state->s = Status::Corruption("corrupted key for ", state->saver.user_key); state->found = true; return false; } // Not reached. Added to avoid false compilation warnings of // "control reaches end of non-void function". return false; } }; State state; state.found = false; state.stats = stats; state.last_file_read = nullptr; state.last_file_read_level = -1; state.options = &options; state.ikey = k.internal_key(); state.vset = vset_; state.saver.state = kNotFound; state.saver.ucmp = vset_->icmp_.user_comparator(); state.saver.user_key = k.user_key(); state.saver.value = value; ForEachOverlapping(state.saver.user_key, state.ikey, &state, &State::Match); return state.found ? state.s : Status::NotFound(Slice()); } bool Version::UpdateStats(const GetStats& stats) { FileMetaData* f = stats.seek_file; if (f != nullptr) { f->allowed_seeks--; if (f->allowed_seeks <= 0 && file_to_compact_ == nullptr) { file_to_compact_ = f; file_to_compact_level_ = stats.seek_file_level; return true; } } return false; } bool Version::RecordReadSample(Slice internal_key) { ParsedInternalKey ikey; if (!ParseInternalKey(internal_key, &ikey)) { return false; } struct State { GetStats stats; // Holds first matching file int matches; static bool Match(void* arg, int level, FileMetaData* f) { State* state = reinterpret_cast(arg); state->matches++; if (state->matches == 1) { // Remember first match. state->stats.seek_file = f; state->stats.seek_file_level = level; } // We can stop iterating once we have a second match. return state->matches < 2; } }; State state; state.matches = 0; ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match); // Must have at least two matches since we want to merge across // files. But what if we have a single file that contains many // overwrites and deletions? Should we have another mechanism for // finding such files? if (state.matches >= 2) { // 1MB cost is about 1 seek (see comment in Builder::Apply). return UpdateStats(state.stats); } return false; } void Version::Ref() { ++refs_; } void Version::Unref() { assert(this != &vset_->dummy_versions_); assert(refs_ >= 1); --refs_; if (refs_ == 0) { delete this; } } bool Version::OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key) { return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level], smallest_user_key, largest_user_key); } int Version::PickLevelForMemTableOutput(const Slice& smallest_user_key, const Slice& largest_user_key) { int level = 0; if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) { // Push to next level if there is no overlap in next level, // and the #bytes overlapping in the level after that are limited. InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); InternalKey limit(largest_user_key, 0, static_cast(0)); std::vector overlaps; while (level < config::kMaxMemCompactLevel) { if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) { break; } if (level + 2 < config::kNumLevels) { // Check that file does not overlap too many grandparent bytes. GetOverlappingInputs(level + 2, &start, &limit, &overlaps); const int64_t sum = TotalFileSize(overlaps); if (sum > MaxGrandParentOverlapBytes(vset_->options_)) { break; } } level++; } } return level; } // Store in "*inputs" all files in "level" that overlap [begin,end] void Version::GetOverlappingInputs(int level, const InternalKey* begin, const InternalKey* end, std::vector* inputs) { assert(level >= 0); assert(level < config::kNumLevels); inputs->clear(); Slice user_begin, user_end; if (begin != nullptr) { user_begin = begin->user_key(); } if (end != nullptr) { user_end = end->user_key(); } const Comparator* user_cmp = vset_->icmp_.user_comparator(); for (size_t i = 0; i < files_[level].size();) { FileMetaData* f = files_[level][i++]; const Slice file_start = f->smallest.user_key(); const Slice file_limit = f->largest.user_key(); if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) { // "f" is completely before specified range; skip it } else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) { // "f" is completely after specified range; skip it } else { inputs->push_back(f); if (level == 0) { // Level-0 files may overlap each other. So check if the newly // added file has expanded the range. If so, restart search. if (begin != nullptr && user_cmp->Compare(file_start, user_begin) < 0) { user_begin = file_start; inputs->clear(); i = 0; } else if (end != nullptr && user_cmp->Compare(file_limit, user_end) > 0) { user_end = file_limit; inputs->clear(); i = 0; } } } } } std::string Version::DebugString() const { std::string r; for (int level = 0; level < config::kNumLevels; level++) { // E.g., // --- level 1 --- // 17:123['a' .. 'd'] // 20:43['e' .. 'g'] r.append("--- level "); AppendNumberTo(&r, level); r.append(" ---\n"); const std::vector& files = files_[level]; for (size_t i = 0; i < files.size(); i++) { r.push_back(' '); AppendNumberTo(&r, files[i]->number); r.push_back(':'); AppendNumberTo(&r, files[i]->file_size); r.append("["); r.append(files[i]->smallest.DebugString()); r.append(" .. "); r.append(files[i]->largest.DebugString()); r.append("]\n"); } } return r; } // A helper class so we can efficiently apply a whole sequence // of edits to a particular state without creating intermediate // Versions that contain full copies of the intermediate state. class VersionSet::Builder { private: // Helper to sort by v->files_[file_number].smallest struct BySmallestKey { const InternalKeyComparator* internal_comparator; bool operator()(FileMetaData* f1, FileMetaData* f2) const { int r = internal_comparator->Compare(f1->smallest, f2->smallest); if (r != 0) { return (r < 0); } else { // Break ties by file number return (f1->number < f2->number); } } }; typedef std::set FileSet; struct LevelState { std::set deleted_files; FileSet* added_files; }; VersionSet* vset_; Version* base_; LevelState levels_[config::kNumLevels]; public: // Initialize a builder with the files from *base and other info from *vset Builder(VersionSet* vset, Version* base) : vset_(vset), base_(base) { base_->Ref(); BySmallestKey cmp; cmp.internal_comparator = &vset_->icmp_; for (int level = 0; level < config::kNumLevels; level++) { levels_[level].added_files = new FileSet(cmp); } } ~Builder() { for (int level = 0; level < config::kNumLevels; level++) { const FileSet* added = levels_[level].added_files; std::vector to_unref; to_unref.reserve(added->size()); for (FileSet::const_iterator it = added->begin(); it != added->end(); ++it) { to_unref.push_back(*it); } delete added; for (uint32_t i = 0; i < to_unref.size(); i++) { FileMetaData* f = to_unref[i]; f->refs--; if (f->refs <= 0) { delete f; } } } base_->Unref(); } // Apply all of the edits in *edit to the current state. void Apply(const VersionEdit* edit) { // Update compaction pointers for (size_t i = 0; i < edit->compact_pointers_.size(); i++) { const int level = edit->compact_pointers_[i].first; vset_->compact_pointer_[level] = edit->compact_pointers_[i].second.Encode().ToString(); } // Delete files for (const auto& deleted_file_set_kvp : edit->deleted_files_) { const int level = deleted_file_set_kvp.first; const uint64_t number = deleted_file_set_kvp.second; levels_[level].deleted_files.insert(number); } // Add new files for (size_t i = 0; i < edit->new_files_.size(); i++) { const int level = edit->new_files_[i].first; FileMetaData* f = new FileMetaData(edit->new_files_[i].second); f->refs = 1; // We arrange to automatically compact this file after // a certain number of seeks. Let's assume: // (1) One seek costs 10ms // (2) Writing or reading 1MB costs 10ms (100MB/s) // (3) A compaction of 1MB does 25MB of IO: // 1MB read from this level // 10-12MB read from next level (boundaries may be misaligned) // 10-12MB written to next level // This implies that 25 seeks cost the same as the compaction // of 1MB of data. I.e., one seek costs approximately the // same as the compaction of 40KB of data. We are a little // conservative and allow approximately one seek for every 16KB // of data before triggering a compaction. f->allowed_seeks = static_cast((f->file_size / 16384U)); if (f->allowed_seeks < 100) f->allowed_seeks = 100; levels_[level].deleted_files.erase(f->number); levels_[level].added_files->insert(f); } } // Save the current state in *v. void SaveTo(Version* v) { BySmallestKey cmp; cmp.internal_comparator = &vset_->icmp_; for (int level = 0; level < config::kNumLevels; level++) { // Merge the set of added files with the set of pre-existing files. // Drop any deleted files. Store the result in *v. const std::vector& base_files = base_->files_[level]; std::vector::const_iterator base_iter = base_files.begin(); std::vector::const_iterator base_end = base_files.end(); const FileSet* added_files = levels_[level].added_files; v->files_[level].reserve(base_files.size() + added_files->size()); for (const auto& added_file : *added_files) { // Add all smaller files listed in base_ for (std::vector::const_iterator bpos = std::upper_bound(base_iter, base_end, added_file, cmp); base_iter != bpos; ++base_iter) { MaybeAddFile(v, level, *base_iter); } MaybeAddFile(v, level, added_file); } // Add remaining base files for (; base_iter != base_end; ++base_iter) { MaybeAddFile(v, level, *base_iter); } #ifndef NDEBUG // Make sure there is no overlap in levels > 0 if (level > 0) { for (uint32_t i = 1; i < v->files_[level].size(); i++) { const InternalKey& prev_end = v->files_[level][i - 1]->largest; const InternalKey& this_begin = v->files_[level][i]->smallest; if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) { std::fprintf(stderr, "overlapping ranges in same level %s vs. %s\n", prev_end.DebugString().c_str(), this_begin.DebugString().c_str()); std::abort(); } } } #endif } } void MaybeAddFile(Version* v, int level, FileMetaData* f) { if (levels_[level].deleted_files.count(f->number) > 0) { // File is deleted: do nothing } else { std::vector* files = &v->files_[level]; if (level > 0 && !files->empty()) { // Must not overlap assert(vset_->icmp_.Compare((*files)[files->size() - 1]->largest, f->smallest) < 0); } f->refs++; files->push_back(f); } } }; VersionSet::VersionSet(const std::string& dbname, const Options* options, TableCache* table_cache, const InternalKeyComparator* cmp) : env_(options->env), dbname_(dbname), options_(options), table_cache_(table_cache), icmp_(*cmp), next_file_number_(2), manifest_file_number_(0), // Filled by Recover() last_sequence_(0), log_number_(0), prev_log_number_(0), descriptor_file_(nullptr), descriptor_log_(nullptr), dummy_versions_(this), current_(nullptr) { AppendVersion(new Version(this)); } VersionSet::~VersionSet() { current_->Unref(); assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty delete descriptor_log_; delete descriptor_file_; } void VersionSet::AppendVersion(Version* v) { // Make "v" current assert(v->refs_ == 0); assert(v != current_); if (current_ != nullptr) { current_->Unref(); } current_ = v; v->Ref(); // Append to linked list v->prev_ = dummy_versions_.prev_; v->next_ = &dummy_versions_; v->prev_->next_ = v; v->next_->prev_ = v; } Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) { if (edit->has_log_number_) { assert(edit->log_number_ >= log_number_); assert(edit->log_number_ < next_file_number_); } else { edit->SetLogNumber(log_number_); } if (!edit->has_prev_log_number_) { edit->SetPrevLogNumber(prev_log_number_); } edit->SetNextFile(next_file_number_); edit->SetLastSequence(last_sequence_); Version* v = new Version(this); { Builder builder(this, current_); builder.Apply(edit); builder.SaveTo(v); } Finalize(v); // Initialize new descriptor log file if necessary by creating // a temporary file that contains a snapshot of the current version. std::string new_manifest_file; Status s; if (descriptor_log_ == nullptr) { // No reason to unlock *mu here since we only hit this path in the // first call to LogAndApply (when opening the database). assert(descriptor_file_ == nullptr); new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_); s = env_->NewWritableFile(new_manifest_file, &descriptor_file_); if (s.ok()) { descriptor_log_ = new log::Writer(descriptor_file_); s = WriteSnapshot(descriptor_log_); } } // Unlock during expensive MANIFEST log write { mu->Unlock(); // Write new record to MANIFEST log if (s.ok()) { std::string record; edit->EncodeTo(&record); s = descriptor_log_->AddRecord(record); if (s.ok()) { s = descriptor_file_->Sync(); } if (!s.ok()) { Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str()); } } // If we just created a new descriptor file, install it by writing a // new CURRENT file that points to it. if (s.ok() && !new_manifest_file.empty()) { s = SetCurrentFile(env_, dbname_, manifest_file_number_); } mu->Lock(); } // Install the new version if (s.ok()) { AppendVersion(v); log_number_ = edit->log_number_; prev_log_number_ = edit->prev_log_number_; } else { delete v; if (!new_manifest_file.empty()) { delete descriptor_log_; delete descriptor_file_; descriptor_log_ = nullptr; descriptor_file_ = nullptr; env_->RemoveFile(new_manifest_file); } } return s; } Status VersionSet::Recover(bool* save_manifest) { struct LogReporter : public log::Reader::Reporter { Status* status; void Corruption(size_t bytes, const Status& s) override { if (this->status->ok()) *this->status = s; } }; // Read "CURRENT" file, which contains a pointer to the current manifest file std::string current; Status s = ReadFileToString(env_, CurrentFileName(dbname_), ¤t); if (!s.ok()) { return s; } if (current.empty() || current[current.size() - 1] != '\n') { return Status::Corruption("CURRENT file does not end with newline"); } current.resize(current.size() - 1); std::string dscname = dbname_ + "/" + current; SequentialFile* file; s = env_->NewSequentialFile(dscname, &file); if (!s.ok()) { if (s.IsNotFound()) { return Status::Corruption("CURRENT points to a non-existent file", s.ToString()); } return s; } bool have_log_number = false; bool have_prev_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; uint64_t last_sequence = 0; uint64_t log_number = 0; uint64_t prev_log_number = 0; Builder builder(this, current_); int read_records = 0; { LogReporter reporter; reporter.status = &s; log::Reader reader(file, &reporter, true /*checksum*/, 0 /*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { ++read_records; VersionEdit edit; s = edit.DecodeFrom(record); if (s.ok()) { if (edit.has_comparator_ && edit.comparator_ != icmp_.user_comparator()->Name()) { s = Status::InvalidArgument( edit.comparator_ + " does not match existing comparator ", icmp_.user_comparator()->Name()); } } if (s.ok()) { builder.Apply(&edit); } if (edit.has_log_number_) { log_number = edit.log_number_; have_log_number = true; } if (edit.has_prev_log_number_) { prev_log_number = edit.prev_log_number_; have_prev_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_last_sequence_) { last_sequence = edit.last_sequence_; have_last_sequence = true; } } } delete file; file = nullptr; if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); } else if (!have_log_number) { s = Status::Corruption("no meta-lognumber entry in descriptor"); } else if (!have_last_sequence) { s = Status::Corruption("no last-sequence-number entry in descriptor"); } if (!have_prev_log_number) { prev_log_number = 0; } MarkFileNumberUsed(prev_log_number); MarkFileNumberUsed(log_number); } if (s.ok()) { Version* v = new Version(this); builder.SaveTo(v); // Install recovered version Finalize(v); AppendVersion(v); manifest_file_number_ = next_file; next_file_number_ = next_file + 1; last_sequence_ = last_sequence; log_number_ = log_number; prev_log_number_ = prev_log_number; // See if we can reuse the existing MANIFEST file. if (ReuseManifest(dscname, current)) { // No need to save new manifest } else { *save_manifest = true; } } else { std::string error = s.ToString(); Log(options_->info_log, "Error recovering version set with %d records: %s", read_records, error.c_str()); } return s; } bool VersionSet::ReuseManifest(const std::string& dscname, const std::string& dscbase) { if (!options_->reuse_logs) { return false; } FileType manifest_type; uint64_t manifest_number; uint64_t manifest_size; if (!ParseFileName(dscbase, &manifest_number, &manifest_type) || manifest_type != kDescriptorFile || !env_->GetFileSize(dscname, &manifest_size).ok() || // Make new compacted MANIFEST if old one is too big manifest_size >= TargetFileSize(options_)) { return false; } assert(descriptor_file_ == nullptr); assert(descriptor_log_ == nullptr); Status r = env_->NewAppendableFile(dscname, &descriptor_file_); if (!r.ok()) { Log(options_->info_log, "Reuse MANIFEST: %s\n", r.ToString().c_str()); assert(descriptor_file_ == nullptr); return false; } Log(options_->info_log, "Reusing MANIFEST %s\n", dscname.c_str()); descriptor_log_ = new log::Writer(descriptor_file_, manifest_size); manifest_file_number_ = manifest_number; return true; } void VersionSet::MarkFileNumberUsed(uint64_t number) { if (next_file_number_ <= number) { next_file_number_ = number + 1; } } void VersionSet::Finalize(Version* v) { // Precomputed best level for next compaction int best_level = -1; double best_score = -1; for (int level = 0; level < config::kNumLevels - 1; level++) { double score; if (level == 0) { // We treat level-0 specially by bounding the number of files // instead of number of bytes for two reasons: // // (1) With larger write-buffer sizes, it is nice not to do too // many level-0 compactions. // // (2) The files in level-0 are merged on every read and // therefore we wish to avoid too many files when the individual // file size is small (perhaps because of a small write-buffer // setting, or very high compression ratios, or lots of // overwrites/deletions). score = v->files_[level].size() / static_cast(config::kL0_CompactionTrigger); } else { // Compute the ratio of current size to size limit. const uint64_t level_bytes = TotalFileSize(v->files_[level]); score = static_cast(level_bytes) / MaxBytesForLevel(options_, level); } if (score > best_score) { best_level = level; best_score = score; } } v->compaction_level_ = best_level; v->compaction_score_ = best_score; } Status VersionSet::WriteSnapshot(log::Writer* log) { // TODO: Break up into multiple records to reduce memory usage on recovery? // Save metadata VersionEdit edit; edit.SetComparatorName(icmp_.user_comparator()->Name()); // Save compaction pointers for (int level = 0; level < config::kNumLevels; level++) { if (!compact_pointer_[level].empty()) { InternalKey key; key.DecodeFrom(compact_pointer_[level]); edit.SetCompactPointer(level, key); } } // Save files for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = current_->files_[level]; for (size_t i = 0; i < files.size(); i++) { const FileMetaData* f = files[i]; edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest); } } std::string record; edit.EncodeTo(&record); return log->AddRecord(record); } int VersionSet::NumLevelFiles(int level) const { assert(level >= 0); assert(level < config::kNumLevels); return current_->files_[level].size(); } const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const { // Update code if kNumLevels changes static_assert(config::kNumLevels == 7, ""); std::snprintf( scratch->buffer, sizeof(scratch->buffer), "files[ %d %d %d %d %d %d %d ]", int(current_->files_[0].size()), int(current_->files_[1].size()), int(current_->files_[2].size()), int(current_->files_[3].size()), int(current_->files_[4].size()), int(current_->files_[5].size()), int(current_->files_[6].size())); return scratch->buffer; } uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { uint64_t result = 0; for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = v->files_[level]; for (size_t i = 0; i < files.size(); i++) { if (icmp_.Compare(files[i]->largest, ikey) <= 0) { // Entire file is before "ikey", so just add the file size result += files[i]->file_size; } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) { // Entire file is after "ikey", so ignore if (level > 0) { // Files other than level 0 are sorted by meta->smallest, so // no further files in this level will contain data for // "ikey". break; } } else { // "ikey" falls in the range for this table. Add the // approximate offset of "ikey" within the table. Table* tableptr; Iterator* iter = table_cache_->NewIterator( ReadOptions(), files[i]->number, files[i]->file_size, &tableptr); if (tableptr != nullptr) { result += tableptr->ApproximateOffsetOf(ikey.Encode()); } delete iter; } } } return result; } void VersionSet::AddLiveFiles(std::set* live) { for (Version* v = dummy_versions_.next_; v != &dummy_versions_; v = v->next_) { for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = v->files_[level]; for (size_t i = 0; i < files.size(); i++) { live->insert(files[i]->number); } } } } int64_t VersionSet::NumLevelBytes(int level) const { assert(level >= 0); assert(level < config::kNumLevels); return TotalFileSize(current_->files_[level]); } int64_t VersionSet::MaxNextLevelOverlappingBytes() { int64_t result = 0; std::vector overlaps; for (int level = 1; level < config::kNumLevels - 1; level++) { for (size_t i = 0; i < current_->files_[level].size(); i++) { const FileMetaData* f = current_->files_[level][i]; current_->GetOverlappingInputs(level + 1, &f->smallest, &f->largest, &overlaps); const int64_t sum = TotalFileSize(overlaps); if (sum > result) { result = sum; } } } return result; } // Stores the minimal range that covers all entries in inputs in // *smallest, *largest. // REQUIRES: inputs is not empty void VersionSet::GetRange(const std::vector& inputs, InternalKey* smallest, InternalKey* largest) { assert(!inputs.empty()); smallest->Clear(); largest->Clear(); for (size_t i = 0; i < inputs.size(); i++) { FileMetaData* f = inputs[i]; if (i == 0) { *smallest = f->smallest; *largest = f->largest; } else { if (icmp_.Compare(f->smallest, *smallest) < 0) { *smallest = f->smallest; } if (icmp_.Compare(f->largest, *largest) > 0) { *largest = f->largest; } } } } // Stores the minimal range that covers all entries in inputs1 and inputs2 // in *smallest, *largest. // REQUIRES: inputs is not empty void VersionSet::GetRange2(const std::vector& inputs1, const std::vector& inputs2, InternalKey* smallest, InternalKey* largest) { std::vector all = inputs1; all.insert(all.end(), inputs2.begin(), inputs2.end()); GetRange(all, smallest, largest); } Iterator* VersionSet::MakeInputIterator(Compaction* c) { ReadOptions options; options.verify_checksums = options_->paranoid_checks; options.fill_cache = false; // Level-0 files have to be merged together. For other levels, // we will make a concatenating iterator per level. // TODO(opt): use concatenating iterator for level-0 if there is no overlap const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2); Iterator** list = new Iterator*[space]; int num = 0; for (int which = 0; which < 2; which++) { if (!c->inputs_[which].empty()) { if (c->level() + which == 0) { const std::vector& files = c->inputs_[which]; for (size_t i = 0; i < files.size(); i++) { list[num++] = table_cache_->NewIterator(options, files[i]->number, files[i]->file_size); } } else { // Create concatenating iterator for the files from this level list[num++] = NewTwoLevelIterator( new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]), &GetFileIterator, table_cache_, options); } } } assert(num <= space); Iterator* result = NewMergingIterator(&icmp_, list, num); delete[] list; return result; } Compaction* VersionSet::PickCompaction() { Compaction* c; int level; // We prefer compactions triggered by too much data in a level over // the compactions triggered by seeks. const bool size_compaction = (current_->compaction_score_ >= 1); const bool seek_compaction = (current_->file_to_compact_ != nullptr); if (size_compaction) { level = current_->compaction_level_; assert(level >= 0); assert(level + 1 < config::kNumLevels); c = new Compaction(options_, level); // Pick the first file that comes after compact_pointer_[level] for (size_t i = 0; i < current_->files_[level].size(); i++) { FileMetaData* f = current_->files_[level][i]; if (compact_pointer_[level].empty() || icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) { c->inputs_[0].push_back(f); break; } } if (c->inputs_[0].empty()) { // Wrap-around to the beginning of the key space c->inputs_[0].push_back(current_->files_[level][0]); } } else if (seek_compaction) { level = current_->file_to_compact_level_; c = new Compaction(options_, level); c->inputs_[0].push_back(current_->file_to_compact_); } else { return nullptr; } c->input_version_ = current_; c->input_version_->Ref(); // Files in level 0 may overlap each other, so pick up all overlapping ones if (level == 0) { InternalKey smallest, largest; GetRange(c->inputs_[0], &smallest, &largest); // Note that the next call will discard the file we placed in // c->inputs_[0] earlier and replace it with an overlapping set // which will include the picked file. current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]); assert(!c->inputs_[0].empty()); } SetupOtherInputs(c); return c; } // Finds the largest key in a vector of files. Returns true if files is not // empty. bool FindLargestKey(const InternalKeyComparator& icmp, const std::vector& files, InternalKey* largest_key) { if (files.empty()) { return false; } *largest_key = files[0]->largest; for (size_t i = 1; i < files.size(); ++i) { FileMetaData* f = files[i]; if (icmp.Compare(f->largest, *largest_key) > 0) { *largest_key = f->largest; } } return true; } // Finds minimum file b2=(l2, u2) in level file for which l2 > u1 and // user_key(l2) = user_key(u1) FileMetaData* FindSmallestBoundaryFile( const InternalKeyComparator& icmp, const std::vector& level_files, const InternalKey& largest_key) { const Comparator* user_cmp = icmp.user_comparator(); FileMetaData* smallest_boundary_file = nullptr; for (size_t i = 0; i < level_files.size(); ++i) { FileMetaData* f = level_files[i]; if (icmp.Compare(f->smallest, largest_key) > 0 && user_cmp->Compare(f->smallest.user_key(), largest_key.user_key()) == 0) { if (smallest_boundary_file == nullptr || icmp.Compare(f->smallest, smallest_boundary_file->smallest) < 0) { smallest_boundary_file = f; } } } return smallest_boundary_file; } // Extracts the largest file b1 from |compaction_files| and then searches for a // b2 in |level_files| for which user_key(u1) = user_key(l2). If it finds such a // file b2 (known as a boundary file) it adds it to |compaction_files| and then // searches again using this new upper bound. // // If there are two blocks, b1=(l1, u1) and b2=(l2, u2) and // user_key(u1) = user_key(l2), and if we compact b1 but not b2 then a // subsequent get operation will yield an incorrect result because it will // return the record from b2 in level i rather than from b1 because it searches // level by level for records matching the supplied user key. // // parameters: // in level_files: List of files to search for boundary files. // in/out compaction_files: List of files to extend by adding boundary files. void AddBoundaryInputs(const InternalKeyComparator& icmp, const std::vector& level_files, std::vector* compaction_files) { InternalKey largest_key; // Quick return if compaction_files is empty. if (!FindLargestKey(icmp, *compaction_files, &largest_key)) { return; } bool continue_searching = true; while (continue_searching) { FileMetaData* smallest_boundary_file = FindSmallestBoundaryFile(icmp, level_files, largest_key); // If a boundary file was found advance largest_key, otherwise we're done. if (smallest_boundary_file != NULL) { compaction_files->push_back(smallest_boundary_file); largest_key = smallest_boundary_file->largest; } else { continue_searching = false; } } } void VersionSet::SetupOtherInputs(Compaction* c) { const int level = c->level(); InternalKey smallest, largest; AddBoundaryInputs(icmp_, current_->files_[level], &c->inputs_[0]); GetRange(c->inputs_[0], &smallest, &largest); current_->GetOverlappingInputs(level + 1, &smallest, &largest, &c->inputs_[1]); AddBoundaryInputs(icmp_, current_->files_[level + 1], &c->inputs_[1]); // Get entire range covered by compaction InternalKey all_start, all_limit; GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); // See if we can grow the number of inputs in "level" without // changing the number of "level+1" files we pick up. if (!c->inputs_[1].empty()) { std::vector expanded0; current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0); AddBoundaryInputs(icmp_, current_->files_[level], &expanded0); const int64_t inputs0_size = TotalFileSize(c->inputs_[0]); const int64_t inputs1_size = TotalFileSize(c->inputs_[1]); const int64_t expanded0_size = TotalFileSize(expanded0); if (expanded0.size() > c->inputs_[0].size() && inputs1_size + expanded0_size < ExpandedCompactionByteSizeLimit(options_)) { InternalKey new_start, new_limit; GetRange(expanded0, &new_start, &new_limit); std::vector expanded1; current_->GetOverlappingInputs(level + 1, &new_start, &new_limit, &expanded1); AddBoundaryInputs(icmp_, current_->files_[level + 1], &expanded1); if (expanded1.size() == c->inputs_[1].size()) { Log(options_->info_log, "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n", level, int(c->inputs_[0].size()), int(c->inputs_[1].size()), long(inputs0_size), long(inputs1_size), int(expanded0.size()), int(expanded1.size()), long(expanded0_size), long(inputs1_size)); smallest = new_start; largest = new_limit; c->inputs_[0] = expanded0; c->inputs_[1] = expanded1; GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); } } } // Compute the set of grandparent files that overlap this compaction // (parent == level+1; grandparent == level+2) if (level + 2 < config::kNumLevels) { current_->GetOverlappingInputs(level + 2, &all_start, &all_limit, &c->grandparents_); } // Update the place where we will do the next compaction for this level. // We update this immediately instead of waiting for the VersionEdit // to be applied so that if the compaction fails, we will try a different // key range next time. compact_pointer_[level] = largest.Encode().ToString(); c->edit_.SetCompactPointer(level, largest); } Compaction* VersionSet::CompactRange(int level, const InternalKey* begin, const InternalKey* end) { std::vector inputs; current_->GetOverlappingInputs(level, begin, end, &inputs); if (inputs.empty()) { return nullptr; } // Avoid compacting too much in one shot in case the range is large. // But we cannot do this for level-0 since level-0 files can overlap // and we must not pick one file and drop another older file if the // two files overlap. if (level > 0) { const uint64_t limit = MaxFileSizeForLevel(options_, level); uint64_t total = 0; for (size_t i = 0; i < inputs.size(); i++) { uint64_t s = inputs[i]->file_size; total += s; if (total >= limit) { inputs.resize(i + 1); break; } } } Compaction* c = new Compaction(options_, level); c->input_version_ = current_; c->input_version_->Ref(); c->inputs_[0] = inputs; SetupOtherInputs(c); return c; } Compaction::Compaction(const Options* options, int level) : level_(level), max_output_file_size_(MaxFileSizeForLevel(options, level)), input_version_(nullptr), grandparent_index_(0), seen_key_(false), overlapped_bytes_(0) { for (int i = 0; i < config::kNumLevels; i++) { level_ptrs_[i] = 0; } } Compaction::~Compaction() { if (input_version_ != nullptr) { input_version_->Unref(); } } bool Compaction::IsTrivialMove() const { const VersionSet* vset = input_version_->vset_; // Avoid a move if there is lots of overlapping grandparent data. // Otherwise, the move could create a parent file that will require // a very expensive merge later on. return (num_input_files(0) == 1 && num_input_files(1) == 0 && TotalFileSize(grandparents_) <= MaxGrandParentOverlapBytes(vset->options_)); } void Compaction::AddInputDeletions(VersionEdit* edit) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < inputs_[which].size(); i++) { edit->RemoveFile(level_ + which, inputs_[which][i]->number); } } } bool Compaction::IsBaseLevelForKey(const Slice& user_key) { // Maybe use binary search to find right entry instead of linear search? const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator(); for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) { const std::vector& files = input_version_->files_[lvl]; while (level_ptrs_[lvl] < files.size()) { FileMetaData* f = files[level_ptrs_[lvl]]; if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { // We've advanced far enough if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) { // Key falls in this file's range, so definitely not base level return false; } break; } level_ptrs_[lvl]++; } } return true; } bool Compaction::ShouldStopBefore(const Slice& internal_key) { const VersionSet* vset = input_version_->vset_; // Scan to find earliest grandparent file that contains key. const InternalKeyComparator* icmp = &vset->icmp_; while (grandparent_index_ < grandparents_.size() && icmp->Compare(internal_key, grandparents_[grandparent_index_]->largest.Encode()) > 0) { if (seen_key_) { overlapped_bytes_ += grandparents_[grandparent_index_]->file_size; } grandparent_index_++; } seen_key_ = true; if (overlapped_bytes_ > MaxGrandParentOverlapBytes(vset->options_)) { // Too much overlap for current output; start new output overlapped_bytes_ = 0; return true; } else { return false; } } void Compaction::ReleaseInputs() { if (input_version_ != nullptr) { input_version_->Unref(); input_version_ = nullptr; } } } // namespace leveldb