作者: 韩晨旭 10225101440 李畅 10225102463
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

1033 lines
31 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "include/db.h"
#include "db/db_impl.h"
#include "db/filename.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "include/env.h"
#include "include/table.h"
#include "util/logging.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace leveldb {
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
class DBTest {
public:
std::string dbname_;
Env* env_;
DB* db_;
Options last_options_;
DBTest() : env_(Env::Default()) {
dbname_ = test::TmpDir() + "/db_test";
DestroyDB(dbname_, Options());
db_ = NULL;
Reopen();
}
~DBTest() {
delete db_;
DestroyDB(dbname_, Options());
}
DBImpl* dbfull() {
return reinterpret_cast<DBImpl*>(db_);
}
void Reopen(Options* options = NULL) {
ASSERT_OK(TryReopen(options));
}
void DestroyAndReopen(Options* options = NULL) {
delete db_;
db_ = NULL;
DestroyDB(dbname_, Options());
ASSERT_OK(TryReopen(options));
}
Status TryReopen(Options* options) {
delete db_;
db_ = NULL;
Options opts;
if (options != NULL) {
opts = *options;
} else {
opts.create_if_missing = true;
}
last_options_ = opts;
return DB::Open(opts, dbname_, &db_);
}
Status Put(const std::string& k, const std::string& v) {
WriteOptions options;
options.sync = false;
WriteBatch batch;
batch.Put(k, v);
return db_->Write(options, &batch);
}
Status Delete(const std::string& k) {
WriteOptions options;
options.sync = false;
WriteBatch batch;
batch.Delete(k);
return db_->Write(options, &batch);
}
std::string Get(const std::string& k, const Snapshot* snapshot = NULL) {
ReadOptions options;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
std::string AllEntriesFor(const Slice& user_key) {
Iterator* iter = dbfull()->TEST_NewInternalIterator();
InternalKey target(user_key, kMaxSequenceNumber, kTypeValue);
iter->Seek(target.Encode());
std::string result;
if (!iter->status().ok()) {
result = iter->status().ToString();
} else {
result = "[ ";
bool first = true;
while (iter->Valid()) {
ParsedInternalKey ikey;
if (!ParseInternalKey(iter->key(), &ikey)) {
result += "CORRUPTED";
} else {
if (last_options_.comparator->Compare(
ikey.user_key, user_key) != 0) {
break;
}
if (!first) {
result += ", ";
}
first = false;
switch (ikey.type) {
case kTypeValue:
result += iter->value().ToString();
break;
case kTypeLargeValueRef:
result += "LARGEVALUE(" + EscapeString(iter->value()) + ")";
break;
case kTypeDeletion:
result += "DEL";
break;
}
}
iter->Next();
}
if (!first) {
result += " ";
}
result += "]";
}
delete iter;
return result;
}
int NumTableFilesAtLevel(int level) {
uint64_t val;
ASSERT_TRUE(
db_->GetProperty("leveldb.num-files-at-level" + NumberToString(level),
&val));
return val;
}
uint64_t Size(const Slice& start, const Slice& limit) {
Range r(start, limit);
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
return size;
}
std::set<LargeValueRef> LargeValueFiles() const {
// Return the set of large value files that exist in the database
std::vector<std::string> filenames;
env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose
uint64_t number;
LargeValueRef large_ref;
FileType type;
std::set<LargeValueRef> live;
for (int i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &large_ref, &type) &&
type == kLargeValueFile) {
fprintf(stderr, " live: %s\n",
LargeValueRefToFilenameString(large_ref).c_str());
live.insert(large_ref);
}
}
fprintf(stderr, "Found %d live large value files\n", (int)live.size());
return live;
}
void Compact(const Slice& start, const Slice& limit) {
dbfull()->TEST_CompactMemTable();
int max_level_with_files = 1;
for (int level = 1; level < config::kNumLevels; level++) {
uint64_t v;
char name[100];
snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level);
if (dbfull()->GetProperty(name, &v) && v > 0) {
max_level_with_files = level;
}
}
for (int level = 0; level < max_level_with_files; level++) {
dbfull()->TEST_CompactRange(level, "", "~");
}
}
void DumpFileCounts(const char* label) {
fprintf(stderr, "---\n%s:\n", label);
fprintf(stderr, "maxoverlap: %lld\n",
static_cast<long long>(
dbfull()->TEST_MaxNextLevelOverlappingBytes()));
for (int level = 0; level < config::kNumLevels; level++) {
int num = NumTableFilesAtLevel(level);
if (num > 0) {
fprintf(stderr, " level %3d : %d files\n", level, num);
}
}
}
};
TEST(DBTest, Empty) {
ASSERT_TRUE(db_ != NULL);
ASSERT_EQ("NOT_FOUND", Get("foo"));
}
TEST(DBTest, ReadWrite) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
}
TEST(DBTest, PutDeleteGet) {
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
ASSERT_OK(db_->Delete(WriteOptions(), "foo"));
ASSERT_EQ("NOT_FOUND", Get("foo"));
}
TEST(DBTest, Recover) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v5", Get("baz"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
ASSERT_OK(Put("foo", "v4"));
ASSERT_EQ("v4", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v5", Get("baz"));
}
TEST(DBTest, RecoveryWithEmptyLog) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("foo", "v2"));
Reopen();
Reopen();
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
}
static std::string Key(int i) {
char buf[100];
snprintf(buf, sizeof(buf), "key%06d", i);
return std::string(buf);
}
TEST(DBTest, MinorCompactionsHappen) {
Options options;
options.write_buffer_size = 10000;
Reopen(&options);
const int N = 100;
int starting_num_tables = NumTableFilesAtLevel(0);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(1000, 'v')));
}
int ending_num_tables = NumTableFilesAtLevel(0);
ASSERT_GT(ending_num_tables, starting_num_tables);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
Reopen();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
}
TEST(DBTest, RecoverWithLargeLog) {
{
Options options;
options.large_value_threshold = 1048576;
Reopen(&options);
ASSERT_OK(Put("big1", std::string(200000, '1')));
ASSERT_OK(Put("big2", std::string(200000, '2')));
ASSERT_OK(Put("small3", std::string(10, '3')));
ASSERT_OK(Put("small4", std::string(10, '4')));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options;
options.write_buffer_size = 100000;
options.large_value_threshold = 1048576;
Reopen(&options);
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
ASSERT_EQ(std::string(200000, '1'), Get("big1"));
ASSERT_EQ(std::string(200000, '2'), Get("big2"));
ASSERT_EQ(std::string(10, '3'), Get("small3"));
ASSERT_EQ(std::string(10, '4'), Get("small4"));
ASSERT_GT(NumTableFilesAtLevel(0), 1);
}
TEST(DBTest, CompactionsGenerateMultipleFiles) {
Options options;
options.write_buffer_size = 100000000; // Large write buffer
options.large_value_threshold = 1048576;
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// Reopening moves updates to level-0
Reopen(&options);
dbfull()->TEST_CompactRange(0, "", Key(100000));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 1);
for (int i = 0; i < 80; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST(DBTest, SparseMerge) {
Options options;
options.compression = kNoCompression;
Reopen(&options);
// Suppose there is:
// small amount of data with prefix A
// large amount of data with prefix B
// small amount of data with prefix C
// and that recent updates have made small changes to all three prefixes.
// Check that we do not do a compaction that merges all of B in one shot.
const std::string value(1000, 'x');
Put("A", "va");
// Write approximately 100MB of "B" values
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
Put("C", "vc");
Compact("", "z");
// Make sparse update
Put("A", "va2");
Put("B100", "bvalue2");
Put("C", "vc2");
dbfull()->TEST_CompactMemTable();
// Compactions should not cause us to create a situation where
// a file overlaps too much data at the next level.
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(0, "", "z");
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(1, "", "z");
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST(DBTest, ApproximateSizes) {
for (int test = 0; test < 2; test++) {
// test==0: default large_value_threshold
// test==1: 1 MB large_value_threshold
Options options;
options.large_value_threshold = (test == 0) ? 65536 : 1048576;
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
DestroyAndReopen();
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
Reopen(&options);
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
const int N = 80;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, 100000)));
}
if (test == 1) {
// 0 because GetApproximateSizes() does not account for memtable space for
// non-large values
ASSERT_TRUE(Between(Size("", Key(50)), 0, 0));
} else {
ASSERT_TRUE(Between(Size("", Key(50)), 100000*50, 100000*50 + 10000));
ASSERT_TRUE(Between(Size(Key(20), Key(30)),
100000*10, 100000*10 + 10000));
}
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_TRUE(Between(Size("", Key(i)), 100000*i, 100000*i + 10000));
ASSERT_TRUE(Between(Size("", Key(i)+".suffix"),
100000 * (i+1), 100000 * (i+1) + 10000));
ASSERT_TRUE(Between(Size(Key(i), Key(i+10)),
100000 * 10, 100000 * 10 + 10000));
}
ASSERT_TRUE(Between(Size("", Key(50)), 5000000, 5010000));
ASSERT_TRUE(Between(Size("", Key(50)+".suffix"), 5100000, 5110000));
dbfull()->TEST_CompactRange(0,
Key(compact_start),
Key(compact_start + 9));
}
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 0);
}
}
}
TEST(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
Options options;
options.large_value_threshold = 65536;
options.compression = kNoCompression;
Reopen();
Random rnd(301);
std::string big1 = RandomString(&rnd, 100000);
ASSERT_OK(Put(Key(0), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(1), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(2), big1));
ASSERT_OK(Put(Key(3), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(4), big1));
ASSERT_OK(Put(Key(5), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(6), RandomString(&rnd, 300000)));
ASSERT_OK(Put(Key(7), RandomString(&rnd, 10000)));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
ASSERT_TRUE(Between(Size("", Key(0)), 0, 0));
ASSERT_TRUE(Between(Size("", Key(1)), 10000, 11000));
ASSERT_TRUE(Between(Size("", Key(2)), 20000, 21000));
ASSERT_TRUE(Between(Size("", Key(3)), 120000, 121000));
ASSERT_TRUE(Between(Size("", Key(4)), 130000, 131000));
ASSERT_TRUE(Between(Size("", Key(5)), 230000, 231000));
ASSERT_TRUE(Between(Size("", Key(6)), 240000, 241000));
ASSERT_TRUE(Between(Size("", Key(7)), 540000, 541000));
ASSERT_TRUE(Between(Size("", Key(8)), 550000, 551000));
ASSERT_TRUE(Between(Size(Key(3), Key(5)), 110000, 111000));
dbfull()->TEST_CompactRange(0, Key(0), Key(100));
}
}
TEST(DBTest, IteratorPinsRef) {
Put("foo", "hello");
// Get iterator that will yield the current contents of the DB.
Iterator* iter = db_->NewIterator(ReadOptions());
// Write to force compactions
Put("foo", "newvalue1");
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(100000, 'v'))); // 100K values
}
Put("foo", "newvalue2");
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("hello", iter->value().ToString());
iter->Next();
ASSERT_TRUE(!iter->Valid());
delete iter;
}
TEST(DBTest, Snapshot) {
Put("foo", "v1");
const Snapshot* s1 = db_->GetSnapshot();
Put("foo", "v2");
const Snapshot* s2 = db_->GetSnapshot();
Put("foo", "v3");
const Snapshot* s3 = db_->GetSnapshot();
Put("foo", "v4");
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v3", Get("foo", s3));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s3);
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s2);
ASSERT_EQ("v4", Get("foo"));
}
TEST(DBTest, HiddenValuesAreRemoved) {
Random rnd(301);
std::string big = RandomString(&rnd, 50000);
Put("foo", big);
Put("pastfoo", "v");
const Snapshot* snapshot = db_->GetSnapshot();
Put("foo", "tiny");
Put("pastfoo2", "v2"); // Advance sequence number one more
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_GT(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(big, Get("foo", snapshot));
ASSERT_TRUE(Between(Size("", "pastfoo"), 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny, " + big + " ]");
dbfull()->TEST_CompactRange(0, "", "x");
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GE(NumTableFilesAtLevel(1), 1);
dbfull()->TEST_CompactRange(1, "", "x");
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_TRUE(Between(Size("", "pastfoo"), 0, 1000));
}
TEST(DBTest, DeletionMarkers1) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
dbfull()->TEST_CompactRange(0, "", "z");
dbfull()->TEST_CompactRange(1, "", "z");
ASSERT_EQ(NumTableFilesAtLevel(2), 1); // foo => v1 is now in level 2 file
Delete("foo");
Put("foo", "v2");
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
dbfull()->TEST_CompactRange(0, "", "z");
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
dbfull()->TEST_CompactRange(1, "", "z");
// Merging L1 w/ L2, so we are the base level for "foo", so DEL is removed.
// (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]");
}
TEST(DBTest, DeletionMarkers2) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
dbfull()->TEST_CompactRange(0, "", "z");
dbfull()->TEST_CompactRange(1, "", "z");
ASSERT_EQ(NumTableFilesAtLevel(2), 1); // foo => v1 is now in level 2 file
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(0, "", "z");
// DEL kept: L2 file overlaps
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(1, "", "z");
// Merging L1 w/ L2, so we are the base level for "foo", so DEL is removed.
// (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
}
TEST(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
virtual const char* Name() const { return "leveldb.NewComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(a, b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
BytewiseComparator()->FindShortestSeparator(s, l);
}
virtual void FindShortSuccessor(std::string* key) const {
BytewiseComparator()->FindShortSuccessor(key);
}
};
NewComparator cmp;
Options new_options;
new_options.comparator = &cmp;
Status s = TryReopen(&new_options);
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
}
static bool LargeValuesOK(DBTest* db,
const std::set<LargeValueRef>& expected) {
std::set<LargeValueRef> actual = db->LargeValueFiles();
if (actual.size() != expected.size()) {
fprintf(stderr, "Sets differ in size: %d vs %d\n",
(int)actual.size(), (int)expected.size());
return false;
}
for (std::set<LargeValueRef>::const_iterator it = expected.begin();
it != expected.end();
++it) {
if (actual.count(*it) != 1) {
fprintf(stderr, " key '%s' not found in actual set\n",
LargeValueRefToFilenameString(*it).c_str());
return false;
}
}
return true;
}
TEST(DBTest, LargeValues1) {
Options options;
options.large_value_threshold = 10000;
Reopen(&options);
Random rnd(301);
std::string big1;
test::CompressibleString(&rnd, 1.0, 100000, &big1); // Not compressible
std::set<LargeValueRef> expected;
ASSERT_OK(Put("big1", big1));
expected.insert(LargeValueRef::Make(big1, kNoCompression));
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Delete("big1"));
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(dbfull()->TEST_CompactMemTable());
// No handling of deletion markers on memtable compactions, so big1 remains
ASSERT_TRUE(LargeValuesOK(this, expected));
dbfull()->TEST_CompactRange(0, "", "z");
expected.erase(LargeValueRef::Make(big1, kNoCompression));
ASSERT_TRUE(LargeValuesOK(this, expected));
}
TEST(DBTest, LargeValues2) {
Options options;
options.large_value_threshold = 10000;
Reopen(&options);
Random rnd(301);
std::string big1, big2;
test::CompressibleString(&rnd, 1.0, 20000, &big1); // Not compressible
test::CompressibleString(&rnd, 0.6, 40000, &big2); // Compressible
std::set<LargeValueRef> expected;
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Put("big1", big1));
expected.insert(LargeValueRef::Make(big1, kNoCompression));
ASSERT_EQ(big1, Get("big1"));
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Put("big2", big2));
ASSERT_EQ(big2, Get("big2"));
#if defined(LEVELDB_PLATFORM_POSIX) || defined(LEVELDB_PLATFORM_CHROMIUM)
// TODO(sanjay) Reenable after compression support is added
expected.insert(LargeValueRef::Make(big2, kNoCompression));
#else
expected.insert(LargeValueRef::Make(big2, kLightweightCompression));
#endif
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_TRUE(LargeValuesOK(this, expected));
dbfull()->TEST_CompactRange(0, "", "z");
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Put("big2", big2));
ASSERT_OK(Put("big2_b", big2));
ASSERT_EQ(big1, Get("big1"));
ASSERT_EQ(big2, Get("big2"));
ASSERT_EQ(big2, Get("big2_b"));
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Delete("big1"));
ASSERT_EQ("NOT_FOUND", Get("big1"));
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_TRUE(LargeValuesOK(this, expected));
dbfull()->TEST_CompactRange(0, "", "z");
expected.erase(LargeValueRef::Make(big1, kNoCompression));
ASSERT_TRUE(LargeValuesOK(this, expected));
dbfull()->TEST_CompactRange(1, "", "z");
ASSERT_OK(Delete("big2"));
ASSERT_EQ("NOT_FOUND", Get("big2"));
ASSERT_EQ(big2, Get("big2_b"));
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_TRUE(LargeValuesOK(this, expected));
dbfull()->TEST_CompactRange(0, "", "z");
ASSERT_TRUE(LargeValuesOK(this, expected));
// Make sure the large value refs survive a reload and compactions after
// the reload.
Reopen();
ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(dbfull()->TEST_CompactMemTable());
dbfull()->TEST_CompactRange(0, "", "z");
ASSERT_TRUE(LargeValuesOK(this, expected));
}
TEST(DBTest, LargeValues3) {
// Make sure we don't compress values if
Options options;
options.large_value_threshold = 10000;
options.compression = kNoCompression;
Reopen(&options);
Random rnd(301);
std::string big1 = std::string(100000, 'x'); // Very compressible
std::set<LargeValueRef> expected;
ASSERT_OK(Put("big1", big1));
ASSERT_EQ(big1, Get("big1"));
expected.insert(LargeValueRef::Make(big1, kNoCompression));
ASSERT_TRUE(LargeValuesOK(this, expected));
}
TEST(DBTest, DBOpen_Options) {
std::string dbname = test::TmpDir() + "/db_options_test";
DestroyDB(dbname, Options());
// Does not exist, and create_if_missing == false: error
DB* db = NULL;
Options opts;
opts.create_if_missing = false;
Status s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != NULL);
ASSERT_TRUE(db == NULL);
// Does not exist, and create_if_missing == true: OK
opts.create_if_missing = true;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
// Does exist, and error_if_exists == true: error
opts.create_if_missing = false;
opts.error_if_exists = true;
s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != NULL);
ASSERT_TRUE(db == NULL);
// Does exist, and error_if_exists == false: OK
opts.create_if_missing = true;
opts.error_if_exists = false;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
}
class ModelDB: public DB {
public:
explicit ModelDB(const Options& options): options_(options) { }
~ModelDB() { }
virtual Status Put(const WriteOptions& o, const Slice& k, const Slice& v) {
return DB::Put(o, k, v);
}
virtual Status Delete(const WriteOptions& o, const Slice& key) {
return DB::Delete(o, key);
}
virtual Status Get(const ReadOptions& options,
const Slice& key, std::string* value) {
assert(false); // Not implemented
return Status::NotFound(key);
}
virtual Iterator* NewIterator(const ReadOptions& options) {
if (options.snapshot == NULL) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
reinterpret_cast<const KVMap*>(options.snapshot->number_);
return new ModelIter(snapshot_state, false);
}
}
virtual const Snapshot* GetSnapshot() {
KVMap* saved = new KVMap;
*saved = map_;
return snapshots_.New(
reinterpret_cast<SequenceNumber>(saved));
}
virtual void ReleaseSnapshot(const Snapshot* snapshot) {
const KVMap* saved = reinterpret_cast<const KVMap*>(snapshot->number_);
delete saved;
snapshots_.Delete(snapshot);
}
virtual Status Write(const WriteOptions& options, WriteBatch* batch) {
assert(options.post_write_snapshot == NULL); // Not supported
for (WriteBatchInternal::Iterator it(*batch); !it.Done(); it.Next()) {
switch (it.op()) {
case kTypeValue:
map_[it.key().ToString()] = it.value().ToString();
break;
case kTypeLargeValueRef:
assert(false); // Should not occur
break;
case kTypeDeletion:
map_.erase(it.key().ToString());
break;
}
}
return Status::OK();
}
virtual bool GetProperty(const Slice& property, uint64_t* value) {
return false;
}
virtual void GetApproximateSizes(const Range* r, int n, uint64_t* sizes) {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
}
private:
typedef std::map<std::string, std::string> KVMap;
class ModelIter: public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {
}
~ModelIter() {
if (owned_) delete map_;
}
virtual bool Valid() const { return iter_ != map_->end(); }
virtual void SeekToFirst() { iter_ = map_->begin(); }
virtual void SeekToLast() {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
virtual void Seek(const Slice& k) {
iter_ = map_->lower_bound(k.ToString());
}
virtual void Next() { ++iter_; }
virtual void Prev() { --iter_; }
virtual Slice key() const { return iter_->first; }
virtual Slice value() const { return iter_->second; }
virtual Status status() const { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
SnapshotList snapshots_;
};
static std::string RandomKey(Random* rnd) {
int len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step,
DB* model,
DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid();
miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(miter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
fprintf(stderr, "%d entries compared: ok=%d\n", count, ok);
delete miter;
delete dbiter;
return ok;
}
TEST(DBTest, Randomized) {
Random rnd(test::RandomSeed());
ModelDB model(last_options_);
const int N = 10000;
const Snapshot* model_snap = NULL;
const Snapshot* db_snap = NULL;
std::string k, v;
for (int step = 0; step < N; step++) {
if (step % 100 == 0) {
fprintf(stderr, "Step %d of %d\n", step, N);
}
int p = rnd.Uniform(100);
if (p < 45) { // Put
k = RandomKey(&rnd);
v = RandomString(&rnd,
rnd.OneIn(20)
? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = RandomString(&rnd, rnd.Uniform(10));
b.Put(k, v);
} else {
b.Delete(k);
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
Reopen();
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
}
}
int main(int argc, char** argv) {
return leveldb::test::RunAllTests();
}