// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #ifndef __Fuchsia__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "leveldb/env.h" #include "leveldb/slice.h" #include "leveldb/status.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/env_posix_test_helper.h" #include "util/posix_logger.h" namespace leveldb { namespace { // Set by EnvPosixTestHelper::SetReadOnlyMMapLimit() and MaxOpenFiles(). int g_open_read_only_file_limit = -1; // Up to 1000 mmap regions for 64-bit binaries; none for 32-bit. constexpr const int kDefaultMmapLimit = (sizeof(void*) >= 8) ? 1000 : 0; // Can be set using EnvPosixTestHelper::SetReadOnlyMMapLimit(). int g_mmap_limit = kDefaultMmapLimit; // Common flags defined for all posix open operations #if defined(HAVE_O_CLOEXEC) constexpr const int kOpenBaseFlags = O_CLOEXEC; #else constexpr const int kOpenBaseFlags = 0; #endif // defined(HAVE_O_CLOEXEC) constexpr const size_t kWritableFileBufferSize = 65536; Status PosixError(const std::string& context, int error_number) { if (error_number == ENOENT) { return Status::NotFound(context, std::strerror(error_number)); } else { return Status::IOError(context, std::strerror(error_number)); } } // Helper class to limit resource usage to avoid exhaustion. // Currently used to limit read-only file descriptors and mmap file usage // so that we do not run out of file descriptors or virtual memory, or run into // kernel performance problems for very large databases. class Limiter { public: // Limit maximum number of resources to |max_acquires|. Limiter(int max_acquires) : #if !defined(NDEBUG) max_acquires_(max_acquires), #endif // !defined(NDEBUG) acquires_allowed_(max_acquires) { assert(max_acquires >= 0); } Limiter(const Limiter&) = delete; Limiter operator=(const Limiter&) = delete; // If another resource is available, acquire it and return true. // Else return false. bool Acquire() { int old_acquires_allowed = acquires_allowed_.fetch_sub(1, std::memory_order_relaxed); if (old_acquires_allowed > 0) return true; int pre_increment_acquires_allowed = acquires_allowed_.fetch_add(1, std::memory_order_relaxed); // Silence compiler warnings about unused arguments when NDEBUG is defined. (void)pre_increment_acquires_allowed; // If the check below fails, Release() was called more times than acquire. assert(pre_increment_acquires_allowed < max_acquires_); return false; } // Release a resource acquired by a previous call to Acquire() that returned // true. void Release() { int old_acquires_allowed = acquires_allowed_.fetch_add(1, std::memory_order_relaxed); // Silence compiler warnings about unused arguments when NDEBUG is defined. (void)old_acquires_allowed; // If the check below fails, Release() was called more times than acquire. assert(old_acquires_allowed < max_acquires_); } private: #if !defined(NDEBUG) // Catches an excessive number of Release() calls. const int max_acquires_; #endif // !defined(NDEBUG) // The number of available resources. // // This is a counter and is not tied to the invariants of any other class, so // it can be operated on safely using std::memory_order_relaxed. std::atomic acquires_allowed_; }; // Implements sequential read access in a file using read(). // // Instances of this class are thread-friendly but not thread-safe, as required // by the SequentialFile API. class PosixSequentialFile final : public SequentialFile { public: PosixSequentialFile(std::string filename, int fd) : fd_(fd), filename_(filename) {} ~PosixSequentialFile() override { close(fd_); } Status Read(size_t n, Slice* result, char* scratch) override { Status status; while (true) { ::ssize_t read_size = ::read(fd_, scratch, n); if (read_size < 0) { // Read error. if (errno == EINTR) { continue; // Retry } status = PosixError(filename_, errno); break; } *result = Slice(scratch, read_size); break; } return status; } Status Skip(uint64_t n) override { if (::lseek(fd_, n, SEEK_CUR) == static_cast(-1)) { return PosixError(filename_, errno); } return Status::OK(); } private: const int fd_; const std::string filename_; }; // Implements random read access in a file using pread(). // // Instances of this class are thread-safe, as required by the RandomAccessFile // API. Instances are immutable and Read() only calls thread-safe library // functions. class PosixRandomAccessFile final : public RandomAccessFile { public: // The new instance takes ownership of |fd|. |fd_limiter| must outlive this // instance, and will be used to determine if . PosixRandomAccessFile(std::string filename, int fd, Limiter* fd_limiter) : has_permanent_fd_(fd_limiter->Acquire()), fd_(has_permanent_fd_ ? fd : -1), fd_limiter_(fd_limiter), filename_(std::move(filename)) { if (!has_permanent_fd_) { assert(fd_ == -1); ::close(fd); // The file will be opened on every read. } } ~PosixRandomAccessFile() override { if (has_permanent_fd_) { assert(fd_ != -1); ::close(fd_); fd_limiter_->Release(); } } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { int fd = fd_; if (!has_permanent_fd_) { fd = ::open(filename_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename_, errno); } } assert(fd != -1); Status status; ssize_t read_size = ::pread(fd, scratch, n, static_cast(offset)); *result = Slice(scratch, (read_size < 0) ? 0 : read_size); if (read_size < 0) { // An error: return a non-ok status. status = PosixError(filename_, errno); } if (!has_permanent_fd_) { // Close the temporary file descriptor opened earlier. assert(fd != fd_); ::close(fd); } return status; } private: const bool has_permanent_fd_; // If false, the file is opened on every read. const int fd_; // -1 if has_permanent_fd_ is false. Limiter* const fd_limiter_; const std::string filename_; }; // Implements random read access in a file using mmap(). // // Instances of this class are thread-safe, as required by the RandomAccessFile // API. Instances are immutable and Read() only calls thread-safe library // functions. class PosixMmapReadableFile final : public RandomAccessFile { public: // mmap_base[0, length-1] points to the memory-mapped contents of the file. It // must be the result of a successful call to mmap(). This instances takes // over the ownership of the region. // // |mmap_limiter| must outlive this instance. The caller must have already // aquired the right to use one mmap region, which will be released when this // instance is destroyed. PosixMmapReadableFile(std::string filename, char* mmap_base, size_t length, Limiter* mmap_limiter) : mmap_base_(mmap_base), length_(length), mmap_limiter_(mmap_limiter), filename_(std::move(filename)) {} ~PosixMmapReadableFile() override { ::munmap(static_cast(mmap_base_), length_); mmap_limiter_->Release(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { if (offset + n > length_) { *result = Slice(); return PosixError(filename_, EINVAL); } *result = Slice(mmap_base_ + offset, n); return Status::OK(); } private: char* const mmap_base_; const size_t length_; Limiter* const mmap_limiter_; const std::string filename_; }; class PosixWritableFile final : public WritableFile { public: PosixWritableFile(std::string filename, int fd) : pos_(0), fd_(fd), is_manifest_(IsManifest(filename)), filename_(std::move(filename)), dirname_(Dirname(filename_)) {} ~PosixWritableFile() override { if (fd_ >= 0) { // Ignoring any potential errors Close(); } } Status Append(const Slice& data) override { size_t write_size = data.size(); const char* write_data = data.data(); // Fit as much as possible into buffer. size_t copy_size = std::min(write_size, kWritableFileBufferSize - pos_); std::memcpy(buf_ + pos_, write_data, copy_size); write_data += copy_size; write_size -= copy_size; pos_ += copy_size; if (write_size == 0) { return Status::OK(); } // Can't fit in buffer, so need to do at least one write. Status status = FlushBuffer(); if (!status.ok()) { return status; } // Small writes go to buffer, large writes are written directly. if (write_size < kWritableFileBufferSize) { std::memcpy(buf_, write_data, write_size); pos_ = write_size; return Status::OK(); } return WriteUnbuffered(write_data, write_size); } Status Close() override { Status status = FlushBuffer(); const int close_result = ::close(fd_); if (close_result < 0 && status.ok()) { status = PosixError(filename_, errno); } fd_ = -1; return status; } Status Flush() override { return FlushBuffer(); } Status Sync() override { // Ensure new files referred to by the manifest are in the filesystem. // // This needs to happen before the manifest file is flushed to disk, to // avoid crashing in a state where the manifest refers to files that are not // yet on disk. Status status = SyncDirIfManifest(); if (!status.ok()) { return status; } status = FlushBuffer(); if (!status.ok()) { return status; } return SyncFd(fd_, filename_); } private: Status FlushBuffer() { Status status = WriteUnbuffered(buf_, pos_); pos_ = 0; return status; } Status WriteUnbuffered(const char* data, size_t size) { while (size > 0) { ssize_t write_result = ::write(fd_, data, size); if (write_result < 0) { if (errno == EINTR) { continue; // Retry } return PosixError(filename_, errno); } data += write_result; size -= write_result; } return Status::OK(); } Status SyncDirIfManifest() { Status status; if (!is_manifest_) { return status; } int fd = ::open(dirname_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { status = PosixError(dirname_, errno); } else { status = SyncFd(fd, dirname_); ::close(fd); } return status; } // Ensures that all the caches associated with the given file descriptor's // data are flushed all the way to durable media, and can withstand power // failures. // // The path argument is only used to populate the description string in the // returned Status if an error occurs. static Status SyncFd(int fd, const std::string& fd_path) { #if HAVE_FULLFSYNC // On macOS and iOS, fsync() doesn't guarantee durability past power // failures. fcntl(F_FULLFSYNC) is required for that purpose. Some // filesystems don't support fcntl(F_FULLFSYNC), and require a fallback to // fsync(). if (::fcntl(fd, F_FULLFSYNC) == 0) { return Status::OK(); } #endif // HAVE_FULLFSYNC #if HAVE_FDATASYNC bool sync_success = ::fdatasync(fd) == 0; #else bool sync_success = ::fsync(fd) == 0; #endif // HAVE_FDATASYNC if (sync_success) { return Status::OK(); } return PosixError(fd_path, errno); } // Returns the directory name in a path pointing to a file. // // Returns "." if the path does not contain any directory separator. static std::string Dirname(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return std::string("."); } // The filename component should not contain a path separator. If it does, // the splitting was done incorrectly. assert(filename.find('/', separator_pos + 1) == std::string::npos); return filename.substr(0, separator_pos); } // Extracts the file name from a path pointing to a file. // // The returned Slice points to |filename|'s data buffer, so it is only valid // while |filename| is alive and unchanged. static Slice Basename(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return Slice(filename); } // The filename component should not contain a path separator. If it does, // the splitting was done incorrectly. assert(filename.find('/', separator_pos + 1) == std::string::npos); return Slice(filename.data() + separator_pos + 1, filename.length() - separator_pos - 1); } // True if the given file is a manifest file. static bool IsManifest(const std::string& filename) { return Basename(filename).starts_with("MANIFEST"); } // buf_[0, pos_ - 1] contains data to be written to fd_. char buf_[kWritableFileBufferSize]; size_t pos_; int fd_; const bool is_manifest_; // True if the file's name starts with MANIFEST. const std::string filename_; const std::string dirname_; // The directory of filename_. }; int LockOrUnlock(int fd, bool lock) { errno = 0; struct ::flock file_lock_info; std::memset(&file_lock_info, 0, sizeof(file_lock_info)); file_lock_info.l_type = (lock ? F_WRLCK : F_UNLCK); file_lock_info.l_whence = SEEK_SET; file_lock_info.l_start = 0; file_lock_info.l_len = 0; // Lock/unlock entire file. return ::fcntl(fd, F_SETLK, &file_lock_info); } // Instances are thread-safe because they are immutable. class PosixFileLock : public FileLock { public: PosixFileLock(int fd, std::string filename) : fd_(fd), filename_(std::move(filename)) {} int fd() const { return fd_; } const std::string& filename() const { return filename_; } private: const int fd_; const std::string filename_; }; // Tracks the files locked by PosixEnv::LockFile(). // // We maintain a separate set instead of relying on fcntl(F_SETLK) because // fcntl(F_SETLK) does not provide any protection against multiple uses from the // same process. // // Instances are thread-safe because all member data is guarded by a mutex. class PosixLockTable { public: bool Insert(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); bool succeeded = locked_files_.insert(fname).second; mu_.Unlock(); return succeeded; } void Remove(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); locked_files_.erase(fname); mu_.Unlock(); } private: port::Mutex mu_; std::set locked_files_ GUARDED_BY(mu_); }; class PosixEnv : public Env { public: PosixEnv(); ~PosixEnv() override { static const char msg[] = "PosixEnv singleton destroyed. Unsupported behavior!\n"; std::fwrite(msg, 1, sizeof(msg), stderr); std::abort(); } Status NewSequentialFile(const std::string& filename, SequentialFile** result) override { int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixSequentialFile(filename, fd); return Status::OK(); } Status NewRandomAccessFile(const std::string& filename, RandomAccessFile** result) override { *result = nullptr; int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename, errno); } if (!mmap_limiter_.Acquire()) { *result = new PosixRandomAccessFile(filename, fd, &fd_limiter_); return Status::OK(); } uint64_t file_size; Status status = GetFileSize(filename, &file_size); if (status.ok()) { void* mmap_base = ::mmap(/*addr=*/nullptr, file_size, PROT_READ, MAP_SHARED, fd, 0); if (mmap_base != MAP_FAILED) { *result = new PosixMmapReadableFile(filename, reinterpret_cast(mmap_base), file_size, &mmap_limiter_); } else { status = PosixError(filename, errno); } } ::close(fd); if (!status.ok()) { mmap_limiter_.Release(); } return status; } Status NewWritableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_TRUNC | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } Status NewAppendableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } bool FileExists(const std::string& filename) override { return ::access(filename.c_str(), F_OK) == 0; } Status GetChildren(const std::string& directory_path, std::vector* result) override { result->clear(); ::DIR* dir = ::opendir(directory_path.c_str()); if (dir == nullptr) { return PosixError(directory_path, errno); } struct ::dirent* entry; while ((entry = ::readdir(dir)) != nullptr) { result->emplace_back(entry->d_name); } ::closedir(dir); return Status::OK(); } Status RemoveFile(const std::string& filename) override { if (::unlink(filename.c_str()) != 0) { return PosixError(filename, errno); } return Status::OK(); } Status CreateDir(const std::string& dirname) override { if (::mkdir(dirname.c_str(), 0755) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status RemoveDir(const std::string& dirname) override { if (::rmdir(dirname.c_str()) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status GetFileSize(const std::string& filename, uint64_t* size) override { struct ::stat file_stat; if (::stat(filename.c_str(), &file_stat) != 0) { *size = 0; return PosixError(filename, errno); } *size = file_stat.st_size; return Status::OK(); } Status RenameFile(const std::string& from, const std::string& to) override { if (std::rename(from.c_str(), to.c_str()) != 0) { return PosixError(from, errno); } return Status::OK(); } Status LockFile(const std::string& filename, FileLock** lock) override { *lock = nullptr; int fd = ::open(filename.c_str(), O_RDWR | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { return PosixError(filename, errno); } if (!locks_.Insert(filename)) { ::close(fd); return Status::IOError("lock " + filename, "already held by process"); } if (LockOrUnlock(fd, true) == -1) { int lock_errno = errno; ::close(fd); locks_.Remove(filename); return PosixError("lock " + filename, lock_errno); } *lock = new PosixFileLock(fd, filename); return Status::OK(); } Status UnlockFile(FileLock* lock) override { PosixFileLock* posix_file_lock = static_cast(lock); if (LockOrUnlock(posix_file_lock->fd(), false) == -1) { return PosixError("unlock " + posix_file_lock->filename(), errno); } locks_.Remove(posix_file_lock->filename()); ::close(posix_file_lock->fd()); delete posix_file_lock; return Status::OK(); } void Schedule(void (*background_work_function)(void* background_work_arg), void* background_work_arg) override; void StartThread(void (*thread_main)(void* thread_main_arg), void* thread_main_arg) override { std::thread new_thread(thread_main, thread_main_arg); new_thread.detach(); } Status GetTestDirectory(std::string* result) override { const char* env = std::getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; std::snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", static_cast(::geteuid())); *result = buf; } // The CreateDir status is ignored because the directory may already exist. CreateDir(*result); return Status::OK(); } Status NewLogger(const std::string& filename, Logger** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } std::FILE* fp = ::fdopen(fd, "w"); if (fp == nullptr) { ::close(fd); *result = nullptr; return PosixError(filename, errno); } else { *result = new PosixLogger(fp); return Status::OK(); } } uint64_t NowMicros() override { static constexpr uint64_t kUsecondsPerSecond = 1000000; struct ::timeval tv; ::gettimeofday(&tv, nullptr); return static_cast(tv.tv_sec) * kUsecondsPerSecond + tv.tv_usec; } void SleepForMicroseconds(int micros) override { std::this_thread::sleep_for(std::chrono::microseconds(micros)); } private: void BackgroundThreadMain(); static void BackgroundThreadEntryPoint(PosixEnv* env) { env->BackgroundThreadMain(); } // Stores the work item data in a Schedule() call. // // Instances are constructed on the thread calling Schedule() and used on the // background thread. // // This structure is thread-safe beacuse it is immutable. struct BackgroundWorkItem { explicit BackgroundWorkItem(void (*function)(void* arg), void* arg) : function(function), arg(arg) {} void (*const function)(void*); void* const arg; }; port::Mutex background_work_mutex_; port::CondVar background_work_cv_ GUARDED_BY(background_work_mutex_); bool started_background_thread_ GUARDED_BY(background_work_mutex_); std::queue background_work_queue_ GUARDED_BY(background_work_mutex_); PosixLockTable locks_; // Thread-safe. Limiter mmap_limiter_; // Thread-safe. Limiter fd_limiter_; // Thread-safe. }; // Return the maximum number of concurrent mmaps. int MaxMmaps() { return g_mmap_limit; } // Return the maximum number of read-only files to keep open. int MaxOpenFiles() { if (g_open_read_only_file_limit >= 0) { return g_open_read_only_file_limit; } #ifdef __Fuchsia__ // Fuchsia doesn't implement getrlimit. g_open_read_only_file_limit = 50; #else struct ::rlimit rlim; if (::getrlimit(RLIMIT_NOFILE, &rlim)) { // getrlimit failed, fallback to hard-coded default. g_open_read_only_file_limit = 50; } else if (rlim.rlim_cur == RLIM_INFINITY) { g_open_read_only_file_limit = std::numeric_limits::max(); } else { // Allow use of 20% of available file descriptors for read-only files. g_open_read_only_file_limit = rlim.rlim_cur / 5; } #endif return g_open_read_only_file_limit; } } // namespace PosixEnv::PosixEnv() : background_work_cv_(&background_work_mutex_), started_background_thread_(false), mmap_limiter_(MaxMmaps()), fd_limiter_(MaxOpenFiles()) {} void PosixEnv::Schedule( void (*background_work_function)(void* background_work_arg), void* background_work_arg) { background_work_mutex_.Lock(); // Start the background thread, if we haven't done so already. if (!started_background_thread_) { started_background_thread_ = true; std::thread background_thread(PosixEnv::BackgroundThreadEntryPoint, this); background_thread.detach(); } // If the queue is empty, the background thread may be waiting for work. if (background_work_queue_.empty()) { background_work_cv_.Signal(); } background_work_queue_.emplace(background_work_function, background_work_arg); background_work_mutex_.Unlock(); } void PosixEnv::BackgroundThreadMain() { while (true) { background_work_mutex_.Lock(); // Wait until there is work to be done. while (background_work_queue_.empty()) { background_work_cv_.Wait(); } assert(!background_work_queue_.empty()); auto background_work_function = background_work_queue_.front().function; void* background_work_arg = background_work_queue_.front().arg; background_work_queue_.pop(); background_work_mutex_.Unlock(); background_work_function(background_work_arg); } } namespace { // Wraps an Env instance whose destructor is never created. // // Intended usage: // using PlatformSingletonEnv = SingletonEnv; // void ConfigurePosixEnv(int param) { // PlatformSingletonEnv::AssertEnvNotInitialized(); // // set global configuration flags. // } // Env* Env::Default() { // static PlatformSingletonEnv default_env; // return default_env.env(); // } template class SingletonEnv { public: SingletonEnv() { #if !defined(NDEBUG) env_initialized_.store(true, std::memory_order_relaxed); #endif // !defined(NDEBUG) static_assert(sizeof(env_storage_) >= sizeof(EnvType), "env_storage_ will not fit the Env"); static_assert(alignof(decltype(env_storage_)) >= alignof(EnvType), "env_storage_ does not meet the Env's alignment needs"); new (&env_storage_) EnvType(); } ~SingletonEnv() = default; SingletonEnv(const SingletonEnv&) = delete; SingletonEnv& operator=(const SingletonEnv&) = delete; Env* env() { return reinterpret_cast(&env_storage_); } static void AssertEnvNotInitialized() { #if !defined(NDEBUG) assert(!env_initialized_.load(std::memory_order_relaxed)); #endif // !defined(NDEBUG) } private: typename std::aligned_storage::type env_storage_; #if !defined(NDEBUG) static std::atomic env_initialized_; #endif // !defined(NDEBUG) }; #if !defined(NDEBUG) template std::atomic SingletonEnv::env_initialized_; #endif // !defined(NDEBUG) using PosixDefaultEnv = SingletonEnv; } // namespace void EnvPosixTestHelper::SetReadOnlyFDLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_open_read_only_file_limit = limit; } void EnvPosixTestHelper::SetReadOnlyMMapLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_mmap_limit = limit; } Env* Env::Default() { static PosixDefaultEnv env_container; return env_container.env(); } } // namespace leveldb