作者: 韩晨旭 10225101440 李畅 10225102463
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

1513 rader
45 KiB

  1. // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file. See the AUTHORS file for names of contributors.
  4. #include "db/db_impl.h"
  5. #include <algorithm>
  6. #include <set>
  7. #include <string>
  8. #include <stdint.h>
  9. #include <stdio.h>
  10. #include <vector>
  11. #include "db/builder.h"
  12. #include "db/db_iter.h"
  13. #include "db/dbformat.h"
  14. #include "db/filename.h"
  15. #include "db/log_reader.h"
  16. #include "db/log_writer.h"
  17. #include "db/memtable.h"
  18. #include "db/table_cache.h"
  19. #include "db/version_set.h"
  20. #include "db/write_batch_internal.h"
  21. #include "leveldb/db.h"
  22. #include "leveldb/env.h"
  23. #include "leveldb/status.h"
  24. #include "leveldb/table.h"
  25. #include "leveldb/table_builder.h"
  26. #include "port/port.h"
  27. #include "table/block.h"
  28. #include "table/merger.h"
  29. #include "table/two_level_iterator.h"
  30. #include "util/coding.h"
  31. #include "util/logging.h"
  32. #include "util/mutexlock.h"
  33. namespace leveldb {
  34. const int kNumNonTableCacheFiles = 10;
  35. // Information kept for every waiting writer
  36. struct DBImpl::Writer {
  37. Status status;
  38. WriteBatch* batch;
  39. bool sync;
  40. bool done;
  41. port::CondVar cv;
  42. explicit Writer(port::Mutex* mu) : cv(mu) { }
  43. };
  44. struct DBImpl::CompactionState {
  45. Compaction* const compaction;
  46. // Sequence numbers < smallest_snapshot are not significant since we
  47. // will never have to service a snapshot below smallest_snapshot.
  48. // Therefore if we have seen a sequence number S <= smallest_snapshot,
  49. // we can drop all entries for the same key with sequence numbers < S.
  50. SequenceNumber smallest_snapshot;
  51. // Files produced by compaction
  52. struct Output {
  53. uint64_t number;
  54. uint64_t file_size;
  55. InternalKey smallest, largest;
  56. };
  57. std::vector<Output> outputs;
  58. // State kept for output being generated
  59. WritableFile* outfile;
  60. TableBuilder* builder;
  61. uint64_t total_bytes;
  62. Output* current_output() { return &outputs[outputs.size()-1]; }
  63. explicit CompactionState(Compaction* c)
  64. : compaction(c),
  65. outfile(NULL),
  66. builder(NULL),
  67. total_bytes(0) {
  68. }
  69. };
  70. // Fix user-supplied options to be reasonable
  71. template <class T,class V>
  72. static void ClipToRange(T* ptr, V minvalue, V maxvalue) {
  73. if (static_cast<V>(*ptr) > maxvalue) *ptr = maxvalue;
  74. if (static_cast<V>(*ptr) < minvalue) *ptr = minvalue;
  75. }
  76. Options SanitizeOptions(const std::string& dbname,
  77. const InternalKeyComparator* icmp,
  78. const InternalFilterPolicy* ipolicy,
  79. const Options& src) {
  80. Options result = src;
  81. result.comparator = icmp;
  82. result.filter_policy = (src.filter_policy != NULL) ? ipolicy : NULL;
  83. ClipToRange(&result.max_open_files, 64 + kNumNonTableCacheFiles, 50000);
  84. ClipToRange(&result.write_buffer_size, 64<<10, 1<<30);
  85. ClipToRange(&result.block_size, 1<<10, 4<<20);
  86. if (result.info_log == NULL) {
  87. // Open a log file in the same directory as the db
  88. src.env->CreateDir(dbname); // In case it does not exist
  89. src.env->RenameFile(InfoLogFileName(dbname), OldInfoLogFileName(dbname));
  90. Status s = src.env->NewLogger(InfoLogFileName(dbname), &result.info_log);
  91. if (!s.ok()) {
  92. // No place suitable for logging
  93. result.info_log = NULL;
  94. }
  95. }
  96. if (result.block_cache == NULL) {
  97. result.block_cache = NewLRUCache(8 << 20);
  98. }
  99. return result;
  100. }
  101. DBImpl::DBImpl(const Options& raw_options, const std::string& dbname)
  102. : env_(raw_options.env),
  103. internal_comparator_(raw_options.comparator),
  104. internal_filter_policy_(raw_options.filter_policy),
  105. options_(SanitizeOptions(dbname, &internal_comparator_,
  106. &internal_filter_policy_, raw_options)),
  107. owns_info_log_(options_.info_log != raw_options.info_log),
  108. owns_cache_(options_.block_cache != raw_options.block_cache),
  109. dbname_(dbname),
  110. db_lock_(NULL),
  111. shutting_down_(NULL),
  112. bg_cv_(&mutex_),
  113. mem_(new MemTable(internal_comparator_)),
  114. imm_(NULL),
  115. logfile_(NULL),
  116. logfile_number_(0),
  117. log_(NULL),
  118. seed_(0),
  119. tmp_batch_(new WriteBatch),
  120. bg_compaction_scheduled_(false),
  121. manual_compaction_(NULL) {
  122. mem_->Ref();
  123. has_imm_.Release_Store(NULL);
  124. // Reserve ten files or so for other uses and give the rest to TableCache.
  125. const int table_cache_size = options_.max_open_files - kNumNonTableCacheFiles;
  126. table_cache_ = new TableCache(dbname_, &options_, table_cache_size);
  127. versions_ = new VersionSet(dbname_, &options_, table_cache_,
  128. &internal_comparator_);
  129. }
  130. DBImpl::~DBImpl() {
  131. // Wait for background work to finish
  132. mutex_.Lock();
  133. shutting_down_.Release_Store(this); // Any non-NULL value is ok
  134. while (bg_compaction_scheduled_) {
  135. bg_cv_.Wait();
  136. }
  137. mutex_.Unlock();
  138. if (db_lock_ != NULL) {
  139. env_->UnlockFile(db_lock_);
  140. }
  141. delete versions_;
  142. if (mem_ != NULL) mem_->Unref();
  143. if (imm_ != NULL) imm_->Unref();
  144. delete tmp_batch_;
  145. delete log_;
  146. delete logfile_;
  147. delete table_cache_;
  148. if (owns_info_log_) {
  149. delete options_.info_log;
  150. }
  151. if (owns_cache_) {
  152. delete options_.block_cache;
  153. }
  154. }
  155. Status DBImpl::NewDB() {
  156. VersionEdit new_db;
  157. new_db.SetComparatorName(user_comparator()->Name());
  158. new_db.SetLogNumber(0);
  159. new_db.SetNextFile(2);
  160. new_db.SetLastSequence(0);
  161. const std::string manifest = DescriptorFileName(dbname_, 1);
  162. WritableFile* file;
  163. Status s = env_->NewWritableFile(manifest, &file);
  164. if (!s.ok()) {
  165. return s;
  166. }
  167. {
  168. log::Writer log(file);
  169. std::string record;
  170. new_db.EncodeTo(&record);
  171. s = log.AddRecord(record);
  172. if (s.ok()) {
  173. s = file->Close();
  174. }
  175. }
  176. delete file;
  177. if (s.ok()) {
  178. // Make "CURRENT" file that points to the new manifest file.
  179. s = SetCurrentFile(env_, dbname_, 1);
  180. } else {
  181. env_->DeleteFile(manifest);
  182. }
  183. return s;
  184. }
  185. void DBImpl::MaybeIgnoreError(Status* s) const {
  186. if (s->ok() || options_.paranoid_checks) {
  187. // No change needed
  188. } else {
  189. Log(options_.info_log, "Ignoring error %s", s->ToString().c_str());
  190. *s = Status::OK();
  191. }
  192. }
  193. void DBImpl::DeleteObsoleteFiles() {
  194. if (!bg_error_.ok()) {
  195. // After a background error, we don't know whether a new version may
  196. // or may not have been committed, so we cannot safely garbage collect.
  197. return;
  198. }
  199. // Make a set of all of the live files
  200. std::set<uint64_t> live = pending_outputs_;
  201. versions_->AddLiveFiles(&live);
  202. std::vector<std::string> filenames;
  203. env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose
  204. uint64_t number;
  205. FileType type;
  206. for (size_t i = 0; i < filenames.size(); i++) {
  207. if (ParseFileName(filenames[i], &number, &type)) {
  208. bool keep = true;
  209. switch (type) {
  210. case kLogFile:
  211. keep = ((number >= versions_->LogNumber()) ||
  212. (number == versions_->PrevLogNumber()));
  213. break;
  214. case kDescriptorFile:
  215. // Keep my manifest file, and any newer incarnations'
  216. // (in case there is a race that allows other incarnations)
  217. keep = (number >= versions_->ManifestFileNumber());
  218. break;
  219. case kTableFile:
  220. keep = (live.find(number) != live.end());
  221. break;
  222. case kTempFile:
  223. // Any temp files that are currently being written to must
  224. // be recorded in pending_outputs_, which is inserted into "live"
  225. keep = (live.find(number) != live.end());
  226. break;
  227. case kCurrentFile:
  228. case kDBLockFile:
  229. case kInfoLogFile:
  230. keep = true;
  231. break;
  232. }
  233. if (!keep) {
  234. if (type == kTableFile) {
  235. table_cache_->Evict(number);
  236. }
  237. Log(options_.info_log, "Delete type=%d #%lld\n",
  238. int(type),
  239. static_cast<unsigned long long>(number));
  240. env_->DeleteFile(dbname_ + "/" + filenames[i]);
  241. }
  242. }
  243. }
  244. }
  245. Status DBImpl::Recover(VersionEdit* edit) {
  246. mutex_.AssertHeld();
  247. // Ignore error from CreateDir since the creation of the DB is
  248. // committed only when the descriptor is created, and this directory
  249. // may already exist from a previous failed creation attempt.
  250. env_->CreateDir(dbname_);
  251. assert(db_lock_ == NULL);
  252. Status s = env_->LockFile(LockFileName(dbname_), &db_lock_);
  253. if (!s.ok()) {
  254. return s;
  255. }
  256. if (!env_->FileExists(CurrentFileName(dbname_))) {
  257. if (options_.create_if_missing) {
  258. s = NewDB();
  259. if (!s.ok()) {
  260. return s;
  261. }
  262. } else {
  263. return Status::InvalidArgument(
  264. dbname_, "does not exist (create_if_missing is false)");
  265. }
  266. } else {
  267. if (options_.error_if_exists) {
  268. return Status::InvalidArgument(
  269. dbname_, "exists (error_if_exists is true)");
  270. }
  271. }
  272. s = versions_->Recover();
  273. if (s.ok()) {
  274. SequenceNumber max_sequence(0);
  275. // Recover from all newer log files than the ones named in the
  276. // descriptor (new log files may have been added by the previous
  277. // incarnation without registering them in the descriptor).
  278. //
  279. // Note that PrevLogNumber() is no longer used, but we pay
  280. // attention to it in case we are recovering a database
  281. // produced by an older version of leveldb.
  282. const uint64_t min_log = versions_->LogNumber();
  283. const uint64_t prev_log = versions_->PrevLogNumber();
  284. std::vector<std::string> filenames;
  285. s = env_->GetChildren(dbname_, &filenames);
  286. if (!s.ok()) {
  287. return s;
  288. }
  289. std::set<uint64_t> expected;
  290. versions_->AddLiveFiles(&expected);
  291. uint64_t number;
  292. FileType type;
  293. std::vector<uint64_t> logs;
  294. for (size_t i = 0; i < filenames.size(); i++) {
  295. if (ParseFileName(filenames[i], &number, &type)) {
  296. expected.erase(number);
  297. if (type == kLogFile && ((number >= min_log) || (number == prev_log)))
  298. logs.push_back(number);
  299. }
  300. }
  301. if (!expected.empty()) {
  302. char buf[50];
  303. snprintf(buf, sizeof(buf), "%d missing files; e.g.",
  304. static_cast<int>(expected.size()));
  305. return Status::Corruption(buf, TableFileName(dbname_, *(expected.begin())));
  306. }
  307. // Recover in the order in which the logs were generated
  308. std::sort(logs.begin(), logs.end());
  309. for (size_t i = 0; i < logs.size(); i++) {
  310. s = RecoverLogFile(logs[i], edit, &max_sequence);
  311. // The previous incarnation may not have written any MANIFEST
  312. // records after allocating this log number. So we manually
  313. // update the file number allocation counter in VersionSet.
  314. versions_->MarkFileNumberUsed(logs[i]);
  315. }
  316. if (s.ok()) {
  317. if (versions_->LastSequence() < max_sequence) {
  318. versions_->SetLastSequence(max_sequence);
  319. }
  320. }
  321. }
  322. return s;
  323. }
  324. Status DBImpl::RecoverLogFile(uint64_t log_number,
  325. VersionEdit* edit,
  326. SequenceNumber* max_sequence) {
  327. struct LogReporter : public log::Reader::Reporter {
  328. Env* env;
  329. Logger* info_log;
  330. const char* fname;
  331. Status* status; // NULL if options_.paranoid_checks==false
  332. virtual void Corruption(size_t bytes, const Status& s) {
  333. Log(info_log, "%s%s: dropping %d bytes; %s",
  334. (this->status == NULL ? "(ignoring error) " : ""),
  335. fname, static_cast<int>(bytes), s.ToString().c_str());
  336. if (this->status != NULL && this->status->ok()) *this->status = s;
  337. }
  338. };
  339. mutex_.AssertHeld();
  340. // Open the log file
  341. std::string fname = LogFileName(dbname_, log_number);
  342. SequentialFile* file;
  343. Status status = env_->NewSequentialFile(fname, &file);
  344. if (!status.ok()) {
  345. MaybeIgnoreError(&status);
  346. return status;
  347. }
  348. // Create the log reader.
  349. LogReporter reporter;
  350. reporter.env = env_;
  351. reporter.info_log = options_.info_log;
  352. reporter.fname = fname.c_str();
  353. reporter.status = (options_.paranoid_checks ? &status : NULL);
  354. // We intentially make log::Reader do checksumming even if
  355. // paranoid_checks==false so that corruptions cause entire commits
  356. // to be skipped instead of propagating bad information (like overly
  357. // large sequence numbers).
  358. log::Reader reader(file, &reporter, true/*checksum*/,
  359. 0/*initial_offset*/);
  360. Log(options_.info_log, "Recovering log #%llu",
  361. (unsigned long long) log_number);
  362. // Read all the records and add to a memtable
  363. std::string scratch;
  364. Slice record;
  365. WriteBatch batch;
  366. MemTable* mem = NULL;
  367. while (reader.ReadRecord(&record, &scratch) &&
  368. status.ok()) {
  369. if (record.size() < 12) {
  370. reporter.Corruption(
  371. record.size(), Status::Corruption("log record too small"));
  372. continue;
  373. }
  374. WriteBatchInternal::SetContents(&batch, record);
  375. if (mem == NULL) {
  376. mem = new MemTable(internal_comparator_);
  377. mem->Ref();
  378. }
  379. status = WriteBatchInternal::InsertInto(&batch, mem);
  380. MaybeIgnoreError(&status);
  381. if (!status.ok()) {
  382. break;
  383. }
  384. const SequenceNumber last_seq =
  385. WriteBatchInternal::Sequence(&batch) +
  386. WriteBatchInternal::Count(&batch) - 1;
  387. if (last_seq > *max_sequence) {
  388. *max_sequence = last_seq;
  389. }
  390. if (mem->ApproximateMemoryUsage() > options_.write_buffer_size) {
  391. status = WriteLevel0Table(mem, edit, NULL);
  392. if (!status.ok()) {
  393. // Reflect errors immediately so that conditions like full
  394. // file-systems cause the DB::Open() to fail.
  395. break;
  396. }
  397. mem->Unref();
  398. mem = NULL;
  399. }
  400. }
  401. if (status.ok() && mem != NULL) {
  402. status = WriteLevel0Table(mem, edit, NULL);
  403. // Reflect errors immediately so that conditions like full
  404. // file-systems cause the DB::Open() to fail.
  405. }
  406. if (mem != NULL) mem->Unref();
  407. delete file;
  408. return status;
  409. }
  410. Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit,
  411. Version* base) {
  412. mutex_.AssertHeld();
  413. const uint64_t start_micros = env_->NowMicros();
  414. FileMetaData meta;
  415. meta.number = versions_->NewFileNumber();
  416. pending_outputs_.insert(meta.number);
  417. Iterator* iter = mem->NewIterator();
  418. Log(options_.info_log, "Level-0 table #%llu: started",
  419. (unsigned long long) meta.number);
  420. Status s;
  421. {
  422. mutex_.Unlock();
  423. s = BuildTable(dbname_, env_, options_, table_cache_, iter, &meta);
  424. mutex_.Lock();
  425. }
  426. Log(options_.info_log, "Level-0 table #%llu: %lld bytes %s",
  427. (unsigned long long) meta.number,
  428. (unsigned long long) meta.file_size,
  429. s.ToString().c_str());
  430. delete iter;
  431. pending_outputs_.erase(meta.number);
  432. // Note that if file_size is zero, the file has been deleted and
  433. // should not be added to the manifest.
  434. int level = 0;
  435. if (s.ok() && meta.file_size > 0) {
  436. const Slice min_user_key = meta.smallest.user_key();
  437. const Slice max_user_key = meta.largest.user_key();
  438. if (base != NULL) {
  439. level = base->PickLevelForMemTableOutput(min_user_key, max_user_key);
  440. }
  441. edit->AddFile(level, meta.number, meta.file_size,
  442. meta.smallest, meta.largest);
  443. }
  444. CompactionStats stats;
  445. stats.micros = env_->NowMicros() - start_micros;
  446. stats.bytes_written = meta.file_size;
  447. stats_[level].Add(stats);
  448. return s;
  449. }
  450. void DBImpl::CompactMemTable() {
  451. mutex_.AssertHeld();
  452. assert(imm_ != NULL);
  453. // Save the contents of the memtable as a new Table
  454. VersionEdit edit;
  455. Version* base = versions_->current();
  456. base->Ref();
  457. Status s = WriteLevel0Table(imm_, &edit, base);
  458. base->Unref();
  459. if (s.ok() && shutting_down_.Acquire_Load()) {
  460. s = Status::IOError("Deleting DB during memtable compaction");
  461. }
  462. // Replace immutable memtable with the generated Table
  463. if (s.ok()) {
  464. edit.SetPrevLogNumber(0);
  465. edit.SetLogNumber(logfile_number_); // Earlier logs no longer needed
  466. s = versions_->LogAndApply(&edit, &mutex_);
  467. }
  468. if (s.ok()) {
  469. // Commit to the new state
  470. imm_->Unref();
  471. imm_ = NULL;
  472. has_imm_.Release_Store(NULL);
  473. DeleteObsoleteFiles();
  474. } else {
  475. RecordBackgroundError(s);
  476. }
  477. }
  478. void DBImpl::CompactRange(const Slice* begin, const Slice* end) {
  479. int max_level_with_files = 1;
  480. {
  481. MutexLock l(&mutex_);
  482. Version* base = versions_->current();
  483. for (int level = 1; level < config::kNumLevels; level++) {
  484. if (base->OverlapInLevel(level, begin, end)) {
  485. max_level_with_files = level;
  486. }
  487. }
  488. }
  489. TEST_CompactMemTable(); // TODO(sanjay): Skip if memtable does not overlap
  490. for (int level = 0; level < max_level_with_files; level++) {
  491. TEST_CompactRange(level, begin, end);
  492. }
  493. }
  494. void DBImpl::TEST_CompactRange(int level, const Slice* begin,const Slice* end) {
  495. assert(level >= 0);
  496. assert(level + 1 < config::kNumLevels);
  497. InternalKey begin_storage, end_storage;
  498. ManualCompaction manual;
  499. manual.level = level;
  500. manual.done = false;
  501. if (begin == NULL) {
  502. manual.begin = NULL;
  503. } else {
  504. begin_storage = InternalKey(*begin, kMaxSequenceNumber, kValueTypeForSeek);
  505. manual.begin = &begin_storage;
  506. }
  507. if (end == NULL) {
  508. manual.end = NULL;
  509. } else {
  510. end_storage = InternalKey(*end, 0, static_cast<ValueType>(0));
  511. manual.end = &end_storage;
  512. }
  513. MutexLock l(&mutex_);
  514. while (!manual.done && !shutting_down_.Acquire_Load() && bg_error_.ok()) {
  515. if (manual_compaction_ == NULL) { // Idle
  516. manual_compaction_ = &manual;
  517. MaybeScheduleCompaction();
  518. } else { // Running either my compaction or another compaction.
  519. bg_cv_.Wait();
  520. }
  521. }
  522. if (manual_compaction_ == &manual) {
  523. // Cancel my manual compaction since we aborted early for some reason.
  524. manual_compaction_ = NULL;
  525. }
  526. }
  527. Status DBImpl::TEST_CompactMemTable() {
  528. // NULL batch means just wait for earlier writes to be done
  529. Status s = Write(WriteOptions(), NULL);
  530. if (s.ok()) {
  531. // Wait until the compaction completes
  532. MutexLock l(&mutex_);
  533. while (imm_ != NULL && bg_error_.ok()) {
  534. bg_cv_.Wait();
  535. }
  536. if (imm_ != NULL) {
  537. s = bg_error_;
  538. }
  539. }
  540. return s;
  541. }
  542. void DBImpl::RecordBackgroundError(const Status& s) {
  543. mutex_.AssertHeld();
  544. if (bg_error_.ok()) {
  545. bg_error_ = s;
  546. bg_cv_.SignalAll();
  547. }
  548. }
  549. void DBImpl::MaybeScheduleCompaction() {
  550. mutex_.AssertHeld();
  551. if (bg_compaction_scheduled_) {
  552. // Already scheduled
  553. } else if (shutting_down_.Acquire_Load()) {
  554. // DB is being deleted; no more background compactions
  555. } else if (!bg_error_.ok()) {
  556. // Already got an error; no more changes
  557. } else if (imm_ == NULL &&
  558. manual_compaction_ == NULL &&
  559. !versions_->NeedsCompaction()) {
  560. // No work to be done
  561. } else {
  562. bg_compaction_scheduled_ = true;
  563. env_->Schedule(&DBImpl::BGWork, this);
  564. }
  565. }
  566. void DBImpl::BGWork(void* db) {
  567. reinterpret_cast<DBImpl*>(db)->BackgroundCall();
  568. }
  569. void DBImpl::BackgroundCall() {
  570. MutexLock l(&mutex_);
  571. assert(bg_compaction_scheduled_);
  572. if (shutting_down_.Acquire_Load()) {
  573. // No more background work when shutting down.
  574. } else if (!bg_error_.ok()) {
  575. // No more background work after a background error.
  576. } else {
  577. BackgroundCompaction();
  578. }
  579. bg_compaction_scheduled_ = false;
  580. // Previous compaction may have produced too many files in a level,
  581. // so reschedule another compaction if needed.
  582. MaybeScheduleCompaction();
  583. bg_cv_.SignalAll();
  584. }
  585. void DBImpl::BackgroundCompaction() {
  586. mutex_.AssertHeld();
  587. if (imm_ != NULL) {
  588. CompactMemTable();
  589. return;
  590. }
  591. Compaction* c;
  592. bool is_manual = (manual_compaction_ != NULL);
  593. InternalKey manual_end;
  594. if (is_manual) {
  595. ManualCompaction* m = manual_compaction_;
  596. c = versions_->CompactRange(m->level, m->begin, m->end);
  597. m->done = (c == NULL);
  598. if (c != NULL) {
  599. manual_end = c->input(0, c->num_input_files(0) - 1)->largest;
  600. }
  601. Log(options_.info_log,
  602. "Manual compaction at level-%d from %s .. %s; will stop at %s\n",
  603. m->level,
  604. (m->begin ? m->begin->DebugString().c_str() : "(begin)"),
  605. (m->end ? m->end->DebugString().c_str() : "(end)"),
  606. (m->done ? "(end)" : manual_end.DebugString().c_str()));
  607. } else {
  608. c = versions_->PickCompaction();
  609. }
  610. Status status;
  611. if (c == NULL) {
  612. // Nothing to do
  613. } else if (!is_manual && c->IsTrivialMove()) {
  614. // Move file to next level
  615. assert(c->num_input_files(0) == 1);
  616. FileMetaData* f = c->input(0, 0);
  617. c->edit()->DeleteFile(c->level(), f->number);
  618. c->edit()->AddFile(c->level() + 1, f->number, f->file_size,
  619. f->smallest, f->largest);
  620. status = versions_->LogAndApply(c->edit(), &mutex_);
  621. if (!status.ok()) {
  622. RecordBackgroundError(status);
  623. }
  624. VersionSet::LevelSummaryStorage tmp;
  625. Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n",
  626. static_cast<unsigned long long>(f->number),
  627. c->level() + 1,
  628. static_cast<unsigned long long>(f->file_size),
  629. status.ToString().c_str(),
  630. versions_->LevelSummary(&tmp));
  631. } else {
  632. CompactionState* compact = new CompactionState(c);
  633. status = DoCompactionWork(compact);
  634. if (!status.ok()) {
  635. RecordBackgroundError(status);
  636. }
  637. CleanupCompaction(compact);
  638. c->ReleaseInputs();
  639. DeleteObsoleteFiles();
  640. }
  641. delete c;
  642. if (status.ok()) {
  643. // Done
  644. } else if (shutting_down_.Acquire_Load()) {
  645. // Ignore compaction errors found during shutting down
  646. } else {
  647. Log(options_.info_log,
  648. "Compaction error: %s", status.ToString().c_str());
  649. }
  650. if (is_manual) {
  651. ManualCompaction* m = manual_compaction_;
  652. if (!status.ok()) {
  653. m->done = true;
  654. }
  655. if (!m->done) {
  656. // We only compacted part of the requested range. Update *m
  657. // to the range that is left to be compacted.
  658. m->tmp_storage = manual_end;
  659. m->begin = &m->tmp_storage;
  660. }
  661. manual_compaction_ = NULL;
  662. }
  663. }
  664. void DBImpl::CleanupCompaction(CompactionState* compact) {
  665. mutex_.AssertHeld();
  666. if (compact->builder != NULL) {
  667. // May happen if we get a shutdown call in the middle of compaction
  668. compact->builder->Abandon();
  669. delete compact->builder;
  670. } else {
  671. assert(compact->outfile == NULL);
  672. }
  673. delete compact->outfile;
  674. for (size_t i = 0; i < compact->outputs.size(); i++) {
  675. const CompactionState::Output& out = compact->outputs[i];
  676. pending_outputs_.erase(out.number);
  677. }
  678. delete compact;
  679. }
  680. Status DBImpl::OpenCompactionOutputFile(CompactionState* compact) {
  681. assert(compact != NULL);
  682. assert(compact->builder == NULL);
  683. uint64_t file_number;
  684. {
  685. mutex_.Lock();
  686. file_number = versions_->NewFileNumber();
  687. pending_outputs_.insert(file_number);
  688. CompactionState::Output out;
  689. out.number = file_number;
  690. out.smallest.Clear();
  691. out.largest.Clear();
  692. compact->outputs.push_back(out);
  693. mutex_.Unlock();
  694. }
  695. // Make the output file
  696. std::string fname = TableFileName(dbname_, file_number);
  697. Status s = env_->NewWritableFile(fname, &compact->outfile);
  698. if (s.ok()) {
  699. compact->builder = new TableBuilder(options_, compact->outfile);
  700. }
  701. return s;
  702. }
  703. Status DBImpl::FinishCompactionOutputFile(CompactionState* compact,
  704. Iterator* input) {
  705. assert(compact != NULL);
  706. assert(compact->outfile != NULL);
  707. assert(compact->builder != NULL);
  708. const uint64_t output_number = compact->current_output()->number;
  709. assert(output_number != 0);
  710. // Check for iterator errors
  711. Status s = input->status();
  712. const uint64_t current_entries = compact->builder->NumEntries();
  713. if (s.ok()) {
  714. s = compact->builder->Finish();
  715. } else {
  716. compact->builder->Abandon();
  717. }
  718. const uint64_t current_bytes = compact->builder->FileSize();
  719. compact->current_output()->file_size = current_bytes;
  720. compact->total_bytes += current_bytes;
  721. delete compact->builder;
  722. compact->builder = NULL;
  723. // Finish and check for file errors
  724. if (s.ok()) {
  725. s = compact->outfile->Sync();
  726. }
  727. if (s.ok()) {
  728. s = compact->outfile->Close();
  729. }
  730. delete compact->outfile;
  731. compact->outfile = NULL;
  732. if (s.ok() && current_entries > 0) {
  733. // Verify that the table is usable
  734. Iterator* iter = table_cache_->NewIterator(ReadOptions(),
  735. output_number,
  736. current_bytes);
  737. s = iter->status();
  738. delete iter;
  739. if (s.ok()) {
  740. Log(options_.info_log,
  741. "Generated table #%llu: %lld keys, %lld bytes",
  742. (unsigned long long) output_number,
  743. (unsigned long long) current_entries,
  744. (unsigned long long) current_bytes);
  745. }
  746. }
  747. return s;
  748. }
  749. Status DBImpl::InstallCompactionResults(CompactionState* compact) {
  750. mutex_.AssertHeld();
  751. Log(options_.info_log, "Compacted %d@%d + %d@%d files => %lld bytes",
  752. compact->compaction->num_input_files(0),
  753. compact->compaction->level(),
  754. compact->compaction->num_input_files(1),
  755. compact->compaction->level() + 1,
  756. static_cast<long long>(compact->total_bytes));
  757. // Add compaction outputs
  758. compact->compaction->AddInputDeletions(compact->compaction->edit());
  759. const int level = compact->compaction->level();
  760. for (size_t i = 0; i < compact->outputs.size(); i++) {
  761. const CompactionState::Output& out = compact->outputs[i];
  762. compact->compaction->edit()->AddFile(
  763. level + 1,
  764. out.number, out.file_size, out.smallest, out.largest);
  765. }
  766. return versions_->LogAndApply(compact->compaction->edit(), &mutex_);
  767. }
  768. Status DBImpl::DoCompactionWork(CompactionState* compact) {
  769. const uint64_t start_micros = env_->NowMicros();
  770. int64_t imm_micros = 0; // Micros spent doing imm_ compactions
  771. Log(options_.info_log, "Compacting %d@%d + %d@%d files",
  772. compact->compaction->num_input_files(0),
  773. compact->compaction->level(),
  774. compact->compaction->num_input_files(1),
  775. compact->compaction->level() + 1);
  776. assert(versions_->NumLevelFiles(compact->compaction->level()) > 0);
  777. assert(compact->builder == NULL);
  778. assert(compact->outfile == NULL);
  779. if (snapshots_.empty()) {
  780. compact->smallest_snapshot = versions_->LastSequence();
  781. } else {
  782. compact->smallest_snapshot = snapshots_.oldest()->number_;
  783. }
  784. // Release mutex while we're actually doing the compaction work
  785. mutex_.Unlock();
  786. Iterator* input = versions_->MakeInputIterator(compact->compaction);
  787. input->SeekToFirst();
  788. Status status;
  789. ParsedInternalKey ikey;
  790. std::string current_user_key;
  791. bool has_current_user_key = false;
  792. SequenceNumber last_sequence_for_key = kMaxSequenceNumber;
  793. for (; input->Valid() && !shutting_down_.Acquire_Load(); ) {
  794. // Prioritize immutable compaction work
  795. if (has_imm_.NoBarrier_Load() != NULL) {
  796. const uint64_t imm_start = env_->NowMicros();
  797. mutex_.Lock();
  798. if (imm_ != NULL) {
  799. CompactMemTable();
  800. bg_cv_.SignalAll(); // Wakeup MakeRoomForWrite() if necessary
  801. }
  802. mutex_.Unlock();
  803. imm_micros += (env_->NowMicros() - imm_start);
  804. }
  805. Slice key = input->key();
  806. if (compact->compaction->ShouldStopBefore(key) &&
  807. compact->builder != NULL) {
  808. status = FinishCompactionOutputFile(compact, input);
  809. if (!status.ok()) {
  810. break;
  811. }
  812. }
  813. // Handle key/value, add to state, etc.
  814. bool drop = false;
  815. if (!ParseInternalKey(key, &ikey)) {
  816. // Do not hide error keys
  817. current_user_key.clear();
  818. has_current_user_key = false;
  819. last_sequence_for_key = kMaxSequenceNumber;
  820. } else {
  821. if (!has_current_user_key ||
  822. user_comparator()->Compare(ikey.user_key,
  823. Slice(current_user_key)) != 0) {
  824. // First occurrence of this user key
  825. current_user_key.assign(ikey.user_key.data(), ikey.user_key.size());
  826. has_current_user_key = true;
  827. last_sequence_for_key = kMaxSequenceNumber;
  828. }
  829. if (last_sequence_for_key <= compact->smallest_snapshot) {
  830. // Hidden by an newer entry for same user key
  831. drop = true; // (A)
  832. } else if (ikey.type == kTypeDeletion &&
  833. ikey.sequence <= compact->smallest_snapshot &&
  834. compact->compaction->IsBaseLevelForKey(ikey.user_key)) {
  835. // For this user key:
  836. // (1) there is no data in higher levels
  837. // (2) data in lower levels will have larger sequence numbers
  838. // (3) data in layers that are being compacted here and have
  839. // smaller sequence numbers will be dropped in the next
  840. // few iterations of this loop (by rule (A) above).
  841. // Therefore this deletion marker is obsolete and can be dropped.
  842. drop = true;
  843. }
  844. last_sequence_for_key = ikey.sequence;
  845. }
  846. #if 0
  847. Log(options_.info_log,
  848. " Compact: %s, seq %d, type: %d %d, drop: %d, is_base: %d, "
  849. "%d smallest_snapshot: %d",
  850. ikey.user_key.ToString().c_str(),
  851. (int)ikey.sequence, ikey.type, kTypeValue, drop,
  852. compact->compaction->IsBaseLevelForKey(ikey.user_key),
  853. (int)last_sequence_for_key, (int)compact->smallest_snapshot);
  854. #endif
  855. if (!drop) {
  856. // Open output file if necessary
  857. if (compact->builder == NULL) {
  858. status = OpenCompactionOutputFile(compact);
  859. if (!status.ok()) {
  860. break;
  861. }
  862. }
  863. if (compact->builder->NumEntries() == 0) {
  864. compact->current_output()->smallest.DecodeFrom(key);
  865. }
  866. compact->current_output()->largest.DecodeFrom(key);
  867. compact->builder->Add(key, input->value());
  868. // Close output file if it is big enough
  869. if (compact->builder->FileSize() >=
  870. compact->compaction->MaxOutputFileSize()) {
  871. status = FinishCompactionOutputFile(compact, input);
  872. if (!status.ok()) {
  873. break;
  874. }
  875. }
  876. }
  877. input->Next();
  878. }
  879. if (status.ok() && shutting_down_.Acquire_Load()) {
  880. status = Status::IOError("Deleting DB during compaction");
  881. }
  882. if (status.ok() && compact->builder != NULL) {
  883. status = FinishCompactionOutputFile(compact, input);
  884. }
  885. if (status.ok()) {
  886. status = input->status();
  887. }
  888. delete input;
  889. input = NULL;
  890. CompactionStats stats;
  891. stats.micros = env_->NowMicros() - start_micros - imm_micros;
  892. for (int which = 0; which < 2; which++) {
  893. for (int i = 0; i < compact->compaction->num_input_files(which); i++) {
  894. stats.bytes_read += compact->compaction->input(which, i)->file_size;
  895. }
  896. }
  897. for (size_t i = 0; i < compact->outputs.size(); i++) {
  898. stats.bytes_written += compact->outputs[i].file_size;
  899. }
  900. mutex_.Lock();
  901. stats_[compact->compaction->level() + 1].Add(stats);
  902. if (status.ok()) {
  903. status = InstallCompactionResults(compact);
  904. }
  905. if (!status.ok()) {
  906. RecordBackgroundError(status);
  907. }
  908. VersionSet::LevelSummaryStorage tmp;
  909. Log(options_.info_log,
  910. "compacted to: %s", versions_->LevelSummary(&tmp));
  911. return status;
  912. }
  913. namespace {
  914. struct IterState {
  915. port::Mutex* mu;
  916. Version* version;
  917. MemTable* mem;
  918. MemTable* imm;
  919. };
  920. static void CleanupIteratorState(void* arg1, void* arg2) {
  921. IterState* state = reinterpret_cast<IterState*>(arg1);
  922. state->mu->Lock();
  923. state->mem->Unref();
  924. if (state->imm != NULL) state->imm->Unref();
  925. state->version->Unref();
  926. state->mu->Unlock();
  927. delete state;
  928. }
  929. } // namespace
  930. Iterator* DBImpl::NewInternalIterator(const ReadOptions& options,
  931. SequenceNumber* latest_snapshot,
  932. uint32_t* seed) {
  933. IterState* cleanup = new IterState;
  934. mutex_.Lock();
  935. *latest_snapshot = versions_->LastSequence();
  936. // Collect together all needed child iterators
  937. std::vector<Iterator*> list;
  938. list.push_back(mem_->NewIterator());
  939. mem_->Ref();
  940. if (imm_ != NULL) {
  941. list.push_back(imm_->NewIterator());
  942. imm_->Ref();
  943. }
  944. versions_->current()->AddIterators(options, &list);
  945. Iterator* internal_iter =
  946. NewMergingIterator(&internal_comparator_, &list[0], list.size());
  947. versions_->current()->Ref();
  948. cleanup->mu = &mutex_;
  949. cleanup->mem = mem_;
  950. cleanup->imm = imm_;
  951. cleanup->version = versions_->current();
  952. internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, NULL);
  953. *seed = ++seed_;
  954. mutex_.Unlock();
  955. return internal_iter;
  956. }
  957. Iterator* DBImpl::TEST_NewInternalIterator() {
  958. SequenceNumber ignored;
  959. uint32_t ignored_seed;
  960. return NewInternalIterator(ReadOptions(), &ignored, &ignored_seed);
  961. }
  962. int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() {
  963. MutexLock l(&mutex_);
  964. return versions_->MaxNextLevelOverlappingBytes();
  965. }
  966. Status DBImpl::Get(const ReadOptions& options,
  967. const Slice& key,
  968. std::string* value) {
  969. Status s;
  970. MutexLock l(&mutex_);
  971. SequenceNumber snapshot;
  972. if (options.snapshot != NULL) {
  973. snapshot = reinterpret_cast<const SnapshotImpl*>(options.snapshot)->number_;
  974. } else {
  975. snapshot = versions_->LastSequence();
  976. }
  977. MemTable* mem = mem_;
  978. MemTable* imm = imm_;
  979. Version* current = versions_->current();
  980. mem->Ref();
  981. if (imm != NULL) imm->Ref();
  982. current->Ref();
  983. bool have_stat_update = false;
  984. Version::GetStats stats;
  985. // Unlock while reading from files and memtables
  986. {
  987. mutex_.Unlock();
  988. // First look in the memtable, then in the immutable memtable (if any).
  989. LookupKey lkey(key, snapshot);
  990. if (mem->Get(lkey, value, &s)) {
  991. // Done
  992. } else if (imm != NULL && imm->Get(lkey, value, &s)) {
  993. // Done
  994. } else {
  995. s = current->Get(options, lkey, value, &stats);
  996. have_stat_update = true;
  997. }
  998. mutex_.Lock();
  999. }
  1000. if (have_stat_update && current->UpdateStats(stats)) {
  1001. MaybeScheduleCompaction();
  1002. }
  1003. mem->Unref();
  1004. if (imm != NULL) imm->Unref();
  1005. current->Unref();
  1006. return s;
  1007. }
  1008. Iterator* DBImpl::NewIterator(const ReadOptions& options) {
  1009. SequenceNumber latest_snapshot;
  1010. uint32_t seed;
  1011. Iterator* iter = NewInternalIterator(options, &latest_snapshot, &seed);
  1012. return NewDBIterator(
  1013. this, user_comparator(), iter,
  1014. (options.snapshot != NULL
  1015. ? reinterpret_cast<const SnapshotImpl*>(options.snapshot)->number_
  1016. : latest_snapshot),
  1017. seed);
  1018. }
  1019. void DBImpl::RecordReadSample(Slice key) {
  1020. MutexLock l(&mutex_);
  1021. if (versions_->current()->RecordReadSample(key)) {
  1022. MaybeScheduleCompaction();
  1023. }
  1024. }
  1025. const Snapshot* DBImpl::GetSnapshot() {
  1026. MutexLock l(&mutex_);
  1027. return snapshots_.New(versions_->LastSequence());
  1028. }
  1029. void DBImpl::ReleaseSnapshot(const Snapshot* s) {
  1030. MutexLock l(&mutex_);
  1031. snapshots_.Delete(reinterpret_cast<const SnapshotImpl*>(s));
  1032. }
  1033. // Convenience methods
  1034. Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) {
  1035. return DB::Put(o, key, val);
  1036. }
  1037. Status DBImpl::Delete(const WriteOptions& options, const Slice& key) {
  1038. return DB::Delete(options, key);
  1039. }
  1040. Status DBImpl::Write(const WriteOptions& options, WriteBatch* my_batch) {
  1041. Writer w(&mutex_);
  1042. w.batch = my_batch;
  1043. w.sync = options.sync;
  1044. w.done = false;
  1045. MutexLock l(&mutex_);
  1046. writers_.push_back(&w);
  1047. while (!w.done && &w != writers_.front()) {
  1048. w.cv.Wait();
  1049. }
  1050. if (w.done) {
  1051. return w.status;
  1052. }
  1053. // May temporarily unlock and wait.
  1054. Status status = MakeRoomForWrite(my_batch == NULL);
  1055. uint64_t last_sequence = versions_->LastSequence();
  1056. Writer* last_writer = &w;
  1057. if (status.ok() && my_batch != NULL) { // NULL batch is for compactions
  1058. WriteBatch* updates = BuildBatchGroup(&last_writer);
  1059. WriteBatchInternal::SetSequence(updates, last_sequence + 1);
  1060. last_sequence += WriteBatchInternal::Count(updates);
  1061. // Add to log and apply to memtable. We can release the lock
  1062. // during this phase since &w is currently responsible for logging
  1063. // and protects against concurrent loggers and concurrent writes
  1064. // into mem_.
  1065. {
  1066. mutex_.Unlock();
  1067. status = log_->AddRecord(WriteBatchInternal::Contents(updates));
  1068. bool sync_error = false;
  1069. if (status.ok() && options.sync) {
  1070. status = logfile_->Sync();
  1071. if (!status.ok()) {
  1072. sync_error = true;
  1073. }
  1074. }
  1075. if (status.ok()) {
  1076. status = WriteBatchInternal::InsertInto(updates, mem_);
  1077. }
  1078. mutex_.Lock();
  1079. if (sync_error) {
  1080. // The state of the log file is indeterminate: the log record we
  1081. // just added may or may not show up when the DB is re-opened.
  1082. // So we force the DB into a mode where all future writes fail.
  1083. RecordBackgroundError(status);
  1084. }
  1085. }
  1086. if (updates == tmp_batch_) tmp_batch_->Clear();
  1087. versions_->SetLastSequence(last_sequence);
  1088. }
  1089. while (true) {
  1090. Writer* ready = writers_.front();
  1091. writers_.pop_front();
  1092. if (ready != &w) {
  1093. ready->status = status;
  1094. ready->done = true;
  1095. ready->cv.Signal();
  1096. }
  1097. if (ready == last_writer) break;
  1098. }
  1099. // Notify new head of write queue
  1100. if (!writers_.empty()) {
  1101. writers_.front()->cv.Signal();
  1102. }
  1103. return status;
  1104. }
  1105. // REQUIRES: Writer list must be non-empty
  1106. // REQUIRES: First writer must have a non-NULL batch
  1107. WriteBatch* DBImpl::BuildBatchGroup(Writer** last_writer) {
  1108. assert(!writers_.empty());
  1109. Writer* first = writers_.front();
  1110. WriteBatch* result = first->batch;
  1111. assert(result != NULL);
  1112. size_t size = WriteBatchInternal::ByteSize(first->batch);
  1113. // Allow the group to grow up to a maximum size, but if the
  1114. // original write is small, limit the growth so we do not slow
  1115. // down the small write too much.
  1116. size_t max_size = 1 << 20;
  1117. if (size <= (128<<10)) {
  1118. max_size = size + (128<<10);
  1119. }
  1120. *last_writer = first;
  1121. std::deque<Writer*>::iterator iter = writers_.begin();
  1122. ++iter; // Advance past "first"
  1123. for (; iter != writers_.end(); ++iter) {
  1124. Writer* w = *iter;
  1125. if (w->sync && !first->sync) {
  1126. // Do not include a sync write into a batch handled by a non-sync write.
  1127. break;
  1128. }
  1129. if (w->batch != NULL) {
  1130. size += WriteBatchInternal::ByteSize(w->batch);
  1131. if (size > max_size) {
  1132. // Do not make batch too big
  1133. break;
  1134. }
  1135. // Append to *reuslt
  1136. if (result == first->batch) {
  1137. // Switch to temporary batch instead of disturbing caller's batch
  1138. result = tmp_batch_;
  1139. assert(WriteBatchInternal::Count(result) == 0);
  1140. WriteBatchInternal::Append(result, first->batch);
  1141. }
  1142. WriteBatchInternal::Append(result, w->batch);
  1143. }
  1144. *last_writer = w;
  1145. }
  1146. return result;
  1147. }
  1148. // REQUIRES: mutex_ is held
  1149. // REQUIRES: this thread is currently at the front of the writer queue
  1150. Status DBImpl::MakeRoomForWrite(bool force) {
  1151. mutex_.AssertHeld();
  1152. assert(!writers_.empty());
  1153. bool allow_delay = !force;
  1154. Status s;
  1155. while (true) {
  1156. if (!bg_error_.ok()) {
  1157. // Yield previous error
  1158. s = bg_error_;
  1159. break;
  1160. } else if (
  1161. allow_delay &&
  1162. versions_->NumLevelFiles(0) >= config::kL0_SlowdownWritesTrigger) {
  1163. // We are getting close to hitting a hard limit on the number of
  1164. // L0 files. Rather than delaying a single write by several
  1165. // seconds when we hit the hard limit, start delaying each
  1166. // individual write by 1ms to reduce latency variance. Also,
  1167. // this delay hands over some CPU to the compaction thread in
  1168. // case it is sharing the same core as the writer.
  1169. mutex_.Unlock();
  1170. env_->SleepForMicroseconds(1000);
  1171. allow_delay = false; // Do not delay a single write more than once
  1172. mutex_.Lock();
  1173. } else if (!force &&
  1174. (mem_->ApproximateMemoryUsage() <= options_.write_buffer_size)) {
  1175. // There is room in current memtable
  1176. break;
  1177. } else if (imm_ != NULL) {
  1178. // We have filled up the current memtable, but the previous
  1179. // one is still being compacted, so we wait.
  1180. Log(options_.info_log, "Current memtable full; waiting...\n");
  1181. bg_cv_.Wait();
  1182. } else if (versions_->NumLevelFiles(0) >= config::kL0_StopWritesTrigger) {
  1183. // There are too many level-0 files.
  1184. Log(options_.info_log, "Too many L0 files; waiting...\n");
  1185. bg_cv_.Wait();
  1186. } else {
  1187. // Attempt to switch to a new memtable and trigger compaction of old
  1188. assert(versions_->PrevLogNumber() == 0);
  1189. uint64_t new_log_number = versions_->NewFileNumber();
  1190. WritableFile* lfile = NULL;
  1191. s = env_->NewWritableFile(LogFileName(dbname_, new_log_number), &lfile);
  1192. if (!s.ok()) {
  1193. // Avoid chewing through file number space in a tight loop.
  1194. versions_->ReuseFileNumber(new_log_number);
  1195. break;
  1196. }
  1197. delete log_;
  1198. delete logfile_;
  1199. logfile_ = lfile;
  1200. logfile_number_ = new_log_number;
  1201. log_ = new log::Writer(lfile);
  1202. imm_ = mem_;
  1203. has_imm_.Release_Store(imm_);
  1204. mem_ = new MemTable(internal_comparator_);
  1205. mem_->Ref();
  1206. force = false; // Do not force another compaction if have room
  1207. MaybeScheduleCompaction();
  1208. }
  1209. }
  1210. return s;
  1211. }
  1212. bool DBImpl::GetProperty(const Slice& property, std::string* value) {
  1213. value->clear();
  1214. MutexLock l(&mutex_);
  1215. Slice in = property;
  1216. Slice prefix("leveldb.");
  1217. if (!in.starts_with(prefix)) return false;
  1218. in.remove_prefix(prefix.size());
  1219. if (in.starts_with("num-files-at-level")) {
  1220. in.remove_prefix(strlen("num-files-at-level"));
  1221. uint64_t level;
  1222. bool ok = ConsumeDecimalNumber(&in, &level) && in.empty();
  1223. if (!ok || level >= config::kNumLevels) {
  1224. return false;
  1225. } else {
  1226. char buf[100];
  1227. snprintf(buf, sizeof(buf), "%d",
  1228. versions_->NumLevelFiles(static_cast<int>(level)));
  1229. *value = buf;
  1230. return true;
  1231. }
  1232. } else if (in == "stats") {
  1233. char buf[200];
  1234. snprintf(buf, sizeof(buf),
  1235. " Compactions\n"
  1236. "Level Files Size(MB) Time(sec) Read(MB) Write(MB)\n"
  1237. "--------------------------------------------------\n"
  1238. );
  1239. value->append(buf);
  1240. for (int level = 0; level < config::kNumLevels; level++) {
  1241. int files = versions_->NumLevelFiles(level);
  1242. if (stats_[level].micros > 0 || files > 0) {
  1243. snprintf(
  1244. buf, sizeof(buf),
  1245. "%3d %8d %8.0f %9.0f %8.0f %9.0f\n",
  1246. level,
  1247. files,
  1248. versions_->NumLevelBytes(level) / 1048576.0,
  1249. stats_[level].micros / 1e6,
  1250. stats_[level].bytes_read / 1048576.0,
  1251. stats_[level].bytes_written / 1048576.0);
  1252. value->append(buf);
  1253. }
  1254. }
  1255. return true;
  1256. } else if (in == "sstables") {
  1257. *value = versions_->current()->DebugString();
  1258. return true;
  1259. }
  1260. return false;
  1261. }
  1262. void DBImpl::GetApproximateSizes(
  1263. const Range* range, int n,
  1264. uint64_t* sizes) {
  1265. // TODO(opt): better implementation
  1266. Version* v;
  1267. {
  1268. MutexLock l(&mutex_);
  1269. versions_->current()->Ref();
  1270. v = versions_->current();
  1271. }
  1272. for (int i = 0; i < n; i++) {
  1273. // Convert user_key into a corresponding internal key.
  1274. InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek);
  1275. InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek);
  1276. uint64_t start = versions_->ApproximateOffsetOf(v, k1);
  1277. uint64_t limit = versions_->ApproximateOffsetOf(v, k2);
  1278. sizes[i] = (limit >= start ? limit - start : 0);
  1279. }
  1280. {
  1281. MutexLock l(&mutex_);
  1282. v->Unref();
  1283. }
  1284. }
  1285. // Default implementations of convenience methods that subclasses of DB
  1286. // can call if they wish
  1287. Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) {
  1288. WriteBatch batch;
  1289. batch.Put(key, value);
  1290. return Write(opt, &batch);
  1291. }
  1292. Status DB::Delete(const WriteOptions& opt, const Slice& key) {
  1293. WriteBatch batch;
  1294. batch.Delete(key);
  1295. return Write(opt, &batch);
  1296. }
  1297. DB::~DB() { }
  1298. Status DB::Open(const Options& options, const std::string& dbname,
  1299. DB** dbptr) {
  1300. *dbptr = NULL;
  1301. DBImpl* impl = new DBImpl(options, dbname);
  1302. impl->mutex_.Lock();
  1303. VersionEdit edit;
  1304. Status s = impl->Recover(&edit); // Handles create_if_missing, error_if_exists
  1305. if (s.ok()) {
  1306. uint64_t new_log_number = impl->versions_->NewFileNumber();
  1307. WritableFile* lfile;
  1308. s = options.env->NewWritableFile(LogFileName(dbname, new_log_number),
  1309. &lfile);
  1310. if (s.ok()) {
  1311. edit.SetLogNumber(new_log_number);
  1312. impl->logfile_ = lfile;
  1313. impl->logfile_number_ = new_log_number;
  1314. impl->log_ = new log::Writer(lfile);
  1315. s = impl->versions_->LogAndApply(&edit, &impl->mutex_);
  1316. }
  1317. if (s.ok()) {
  1318. impl->DeleteObsoleteFiles();
  1319. impl->MaybeScheduleCompaction();
  1320. }
  1321. }
  1322. impl->mutex_.Unlock();
  1323. if (s.ok()) {
  1324. *dbptr = impl;
  1325. } else {
  1326. delete impl;
  1327. }
  1328. return s;
  1329. }
  1330. Snapshot::~Snapshot() {
  1331. }
  1332. Status DestroyDB(const std::string& dbname, const Options& options) {
  1333. Env* env = options.env;
  1334. std::vector<std::string> filenames;
  1335. // Ignore error in case directory does not exist
  1336. env->GetChildren(dbname, &filenames);
  1337. if (filenames.empty()) {
  1338. return Status::OK();
  1339. }
  1340. FileLock* lock;
  1341. const std::string lockname = LockFileName(dbname);
  1342. Status result = env->LockFile(lockname, &lock);
  1343. if (result.ok()) {
  1344. uint64_t number;
  1345. FileType type;
  1346. for (size_t i = 0; i < filenames.size(); i++) {
  1347. if (ParseFileName(filenames[i], &number, &type) &&
  1348. type != kDBLockFile) { // Lock file will be deleted at end
  1349. Status del = env->DeleteFile(dbname + "/" + filenames[i]);
  1350. if (result.ok() && !del.ok()) {
  1351. result = del;
  1352. }
  1353. }
  1354. }
  1355. env->UnlockFile(lock); // Ignore error since state is already gone
  1356. env->DeleteFile(lockname);
  1357. env->DeleteDir(dbname); // Ignore error in case dir contains other files
  1358. }
  1359. return result;
  1360. }
  1361. } // namespace leveldb