Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 

541 rader
15 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "include/cache.h"
#include "include/db.h"
#include "include/env.h"
#include "include/write_batch.h"
#include "port/port.h"
#include "util/crc32c.h"
#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"
// Comma-separated list of operations to run in the specified order
// Actual benchmarks:
// fillseq -- write N values in sequential key order in async mode
// fillrandom -- write N values in random key order in async mode
// overwrite -- overwrite N values in random key order in async mode
// fillsync -- write N/100 values in random key order in sync mode
// fill100K -- write N/1000 100K values in random order in async mode
// readseq -- read N values sequentially
// readreverse -- read N values in reverse order
// readrandom -- read N values in random order
// crc32c -- repeated crc32c of 4K of data
// sha1 -- repeated SHA1 computation over 4K of data
// Meta operations:
// compact -- Compact the entire DB
// heapprofile -- Dump a heap profile (if supported by this port)
// sync -- switch to synchronous writes (not the default)
// nosync -- switch to asynchronous writes (the default)
// tenth -- divide N by 10 (i.e., following benchmarks are smaller)
// normal -- reset N back to its normal value (1000000)
static const char* FLAGS_benchmarks =
"fillseq,"
"fillsync,"
"fillrandom,"
"overwrite,"
"readrandom,"
"readrandom," // Extra run to allow previous compactions to quiesce
"readseq,"
"readreverse,"
"compact,"
"readrandom,"
"readseq,"
"readreverse,"
"fill100K,"
"crc32c,"
"sha1"
;
// Number of key/values to place in database
static int FLAGS_num = 1000000;
// Size of each value
static int FLAGS_value_size = 100;
// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;
// Print histogram of operation timings
static bool FLAGS_histogram = false;
// Number of bytes to buffer in memtable before compacting
static int FLAGS_write_buffer_size = 1 << 20;
namespace leveldb {
// Helper for quickly generating random data.
namespace {
class RandomGenerator {
private:
std::string data_;
int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < 1048576) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static Slice TrimSpace(Slice s) {
int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
int limit = s.size();
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
}
class Benchmark {
private:
Cache* cache_;
DB* db_;
int num_;
int heap_counter_;
double start_;
double last_op_finish_;
int64_t bytes_;
std::string message_;
Histogram hist_;
RandomGenerator gen_;
Random rand_;
// State kept for progress messages
int done_;
int next_report_; // When to report next
void PrintHeader() {
const int kKeySize = 16;
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", kKeySize);
fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n",
FLAGS_value_size,
static_cast<int>(FLAGS_value_size * FLAGS_compression_ratio + 0.5));
fprintf(stdout, "Entries: %d\n", num_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
(((kKeySize + FLAGS_value_size) * num_) / 1048576.0));
fprintf(stdout, "FileSize: %.1f MB (estimated)\n",
(((kKeySize + FLAGS_value_size * FLAGS_compression_ratio) * num_)
/ 1048576.0));
PrintWarnings();
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
void PrintEnvironment() {
fprintf(stderr, "LevelDB: version %d.%d\n",
kMajorVersion, kMinorVersion);
#if defined(__linux)
time_t now = time(NULL);
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != NULL) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != NULL) {
const char* sep = strchr(line, ':');
if (sep == NULL) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
void Start() {
start_ = Env::Default()->NowMicros() * 1e-6;
bytes_ = 0;
message_.clear();
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
next_report_ = 100;
}
void FinishedSingleOp() {
if (FLAGS_histogram) {
double now = Env::Default()->NowMicros() * 1e-6;
double micros = (now - last_op_finish_) * 1e6;
hist_.Add(micros);
if (micros > 20000) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (next_report_ < 1000) {
next_report_ += 100;
} else if (next_report_ < 10000) {
next_report_ += 1000;
} else if (next_report_ < 100000) {
next_report_ += 10000;
} else {
next_report_ += 100000;
}
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
fflush(stderr);
}
}
void Stop(const Slice& name) {
double finish = Env::Default()->NowMicros() * 1e-6;
// Pretend at least one op was done in case we are running a benchmark
// that does nto call FinishedSingleOp().
if (done_ < 1) done_ = 1;
if (bytes_ > 0) {
char rate[100];
snprintf(rate, sizeof(rate), "%5.1f MB/s",
(bytes_ / 1048576.0) / (finish - start_));
if (!message_.empty()) {
message_ = std::string(rate) + " " + message_;
} else {
message_ = rate;
}
}
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
name.ToString().c_str(),
(finish - start_) * 1e6 / done_,
(message_.empty() ? "" : " "),
message_.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
public:
enum Order {
SEQUENTIAL,
RANDOM
};
enum DBState {
FRESH,
EXISTING
};
Benchmark() : cache_(NewLRUCache(200<<20)),
db_(NULL),
num_(FLAGS_num),
heap_counter_(0),
bytes_(0),
rand_(301) {
std::vector<std::string> files;
Env::Default()->GetChildren("/tmp/dbbench", &files);
for (int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
Env::Default()->DeleteFile("/tmp/dbbench/" + files[i]);
}
}
DestroyDB("/tmp/dbbench", Options());
}
~Benchmark() {
delete db_;
delete cache_;
}
void Run() {
PrintHeader();
Open();
const char* benchmarks = FLAGS_benchmarks;
while (benchmarks != NULL) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == NULL) {
name = benchmarks;
benchmarks = NULL;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
Start();
WriteOptions write_options;
write_options.sync = false;
if (name == Slice("fillseq")) {
Write(write_options, SEQUENTIAL, FRESH, num_, FLAGS_value_size);
} else if (name == Slice("fillrandom")) {
Write(write_options, RANDOM, FRESH, num_, FLAGS_value_size);
} else if (name == Slice("overwrite")) {
Write(write_options, RANDOM, EXISTING, num_, FLAGS_value_size);
} else if (name == Slice("fillsync")) {
write_options.sync = true;
Write(write_options, RANDOM, FRESH, num_ / 100, FLAGS_value_size);
} else if (name == Slice("fill100K")) {
Write(write_options, RANDOM, FRESH, num_ / 1000, 100 * 1000);
} else if (name == Slice("readseq")) {
ReadSequential();
} else if (name == Slice("readreverse")) {
ReadReverse();
} else if (name == Slice("readrandom")) {
ReadRandom();
} else if (name == Slice("compact")) {
Compact();
} else if (name == Slice("crc32c")) {
Crc32c(4096, "(4K per op)");
} else if (name == Slice("sha1")) {
SHA1(4096, "(4K per op)");
} else if (name == Slice("heapprofile")) {
HeapProfile();
} else {
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
Stop(name);
}
}
private:
void Crc32c(int size, const char* label) {
// Checksum about 500MB of data total
std::string data(size, 'x');
int64_t bytes = 0;
uint32_t crc = 0;
while (bytes < 500 * 1048576) {
crc = crc32c::Value(data.data(), size);
FinishedSingleOp();
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));
bytes_ = bytes;
message_ = label;
}
void SHA1(int size, const char* label) {
// SHA1 about 100MB of data total
std::string data(size, 'x');
int64_t bytes = 0;
char sha1[20];
while (bytes < 100 * 1048576) {
port::SHA1_Hash(data.data(), size, sha1);
FinishedSingleOp();
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... sha1=%02x...\r", static_cast<unsigned int>(sha1[0]));
bytes_ = bytes;
message_ = label;
}
void Open() {
assert(db_ == NULL);
Options options;
options.create_if_missing = true;
options.max_open_files = 10000;
options.block_cache = cache_;
options.write_buffer_size = FLAGS_write_buffer_size;
Status s = DB::Open(options, "/tmp/dbbench", &db_);
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
}
void Write(const WriteOptions& options, Order order, DBState state,
int num_entries, int value_size) {
if (state == FRESH) {
delete db_;
db_ = NULL;
DestroyDB("/tmp/dbbench", Options());
Open();
Start(); // Do not count time taken to destroy/open
}
if (num_entries != num_) {
char msg[100];
snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
message_ = msg;
}
WriteBatch batch;
Status s;
std::string val;
for (int i = 0; i < num_entries; i++) {
const int k = (order == SEQUENTIAL) ? i : (rand_.Next() % FLAGS_num);
char key[100];
snprintf(key, sizeof(key), "%016d", k);
batch.Clear();
batch.Put(key, gen_.Generate(value_size));
s = db_->Write(options, &batch);
bytes_ += value_size + strlen(key);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
FinishedSingleOp();
}
}
void ReadSequential() {
Iterator* iter = db_->NewIterator(ReadOptions());
int i = 0;
for (iter->SeekToFirst(); i < num_ && iter->Valid(); iter->Next()) {
bytes_ += iter->key().size() + iter->value().size();
FinishedSingleOp();
++i;
}
delete iter;
}
void ReadReverse() {
Iterator* iter = db_->NewIterator(ReadOptions());
int i = 0;
for (iter->SeekToLast(); i < num_ && iter->Valid(); iter->Prev()) {
bytes_ += iter->key().size() + iter->value().size();
FinishedSingleOp();
++i;
}
delete iter;
}
void ReadRandom() {
ReadOptions options;
std::string value;
for (int i = 0; i < num_; i++) {
char key[100];
const int k = rand_.Next() % FLAGS_num;
snprintf(key, sizeof(key), "%016d", k);
db_->Get(options, key, &value);
FinishedSingleOp();
}
}
void Compact() {
DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);
dbi->TEST_CompactMemTable();
int max_level_with_files = 1;
for (int level = 1; level < config::kNumLevels; level++) {
uint64_t v;
char name[100];
snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level);
if (db_->GetProperty(name, &v) && v > 0) {
max_level_with_files = level;
}
}
for (int level = 0; level < max_level_with_files; level++) {
dbi->TEST_CompactRange(level, "", "~");
}
}
static void WriteToFile(void* arg, const char* buf, int n) {
reinterpret_cast<WritableFile*>(arg)->Append(Slice(buf, n));
}
void HeapProfile() {
char fname[100];
snprintf(fname, sizeof(fname), "/tmp/dbbench/heap-%04d", ++heap_counter_);
WritableFile* file;
Status s = Env::Default()->NewWritableFile(fname, &file);
if (!s.ok()) {
message_ = s.ToString();
return;
}
bool ok = port::GetHeapProfile(WriteToFile, file);
delete file;
if (!ok) {
message_ = "not supported";
Env::Default()->DeleteFile(fname);
}
}
};
}
int main(int argc, char** argv) {
for (int i = 1; i < argc; i++) {
double d;
int n;
char junk;
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
FLAGS_compression_ratio = d;
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_histogram = n;
} else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
FLAGS_num = n;
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
FLAGS_value_size = n;
} else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
FLAGS_write_buffer_size = n;
} else {
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
exit(1);
}
}
leveldb::Benchmark benchmark;
benchmark.Run();
return 0;
}