#include <defs.h>
|
|
#include <mmu.h>
|
|
#include <memlayout.h>
|
|
#include <clock.h>
|
|
#include <trap.h>
|
|
#include <x86.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <console.h>
|
|
#include <vmm.h>
|
|
#include <swap.h>
|
|
#include <kdebug.h>
|
|
#include <unistd.h>
|
|
#include <syscall.h>
|
|
#include <error.h>
|
|
#include <sched.h>
|
|
#include <sync.h>
|
|
#include <proc.h>
|
|
|
|
#define TICK_NUM 100
|
|
|
|
static void print_ticks() {
|
|
cprintf("%d ticks\n",TICK_NUM);
|
|
#ifdef DEBUG_GRADE
|
|
cprintf("End of Test.\n");
|
|
panic("EOT: kernel seems ok.");
|
|
#endif
|
|
}
|
|
|
|
/* *
|
|
* Interrupt descriptor table:
|
|
*
|
|
* Must be built at run time because shifted function addresses can't
|
|
* be represented in relocation records.
|
|
* */
|
|
static struct gatedesc idt[256] = {{0}};
|
|
|
|
static struct pseudodesc idt_pd = {
|
|
sizeof(idt) - 1, (uintptr_t)idt
|
|
};
|
|
|
|
/* idt_init - initialize IDT to each of the entry points in kern/trap/vectors.S */
|
|
void
|
|
idt_init(void) {
|
|
/* LAB1 YOUR CODE : STEP 2 */
|
|
/* (1) Where are the entry addrs of each Interrupt Service Routine (ISR)?
|
|
* All ISR's entry addrs are stored in __vectors. where is uintptr_t __vectors[] ?
|
|
* __vectors[] is in kern/trap/vector.S which is produced by tools/vector.c
|
|
* (try "make" command in lab1, then you will find vector.S in kern/trap DIR)
|
|
* You can use "extern uintptr_t __vectors[];" to define this extern variable which will be used later.
|
|
* (2) Now you should setup the entries of ISR in Interrupt Description Table (IDT).
|
|
* Can you see idt[256] in this file? Yes, it's IDT! you can use SETGATE macro to setup each item of IDT
|
|
* (3) After setup the contents of IDT, you will let CPU know where is the IDT by using 'lidt' instruction.
|
|
* You don't know the meaning of this instruction? just google it! and check the libs/x86.h to know more.
|
|
* Notice: the argument of lidt is idt_pd. try to find it!
|
|
*/
|
|
/* LAB5 YOUR CODE */
|
|
//you should update your lab1 code (just add ONE or TWO lines of code), let user app to use syscall to get the service of ucore
|
|
//so you should setup the syscall interrupt gate in here
|
|
extern uintptr_t __vectors[];
|
|
int i;
|
|
for (i = 0; i < sizeof(idt) / sizeof(struct gatedesc); i ++) {
|
|
SETGATE(idt[i], 0, GD_KTEXT, __vectors[i], DPL_KERNEL);
|
|
}
|
|
SETGATE(idt[T_SYSCALL], 1, GD_KTEXT, __vectors[T_SYSCALL], DPL_USER);
|
|
lidt(&idt_pd);
|
|
}
|
|
|
|
static const char *
|
|
trapname(int trapno) {
|
|
static const char * const excnames[] = {
|
|
"Divide error",
|
|
"Debug",
|
|
"Non-Maskable Interrupt",
|
|
"Breakpoint",
|
|
"Overflow",
|
|
"BOUND Range Exceeded",
|
|
"Invalid Opcode",
|
|
"Device Not Available",
|
|
"Double Fault",
|
|
"Coprocessor Segment Overrun",
|
|
"Invalid TSS",
|
|
"Segment Not Present",
|
|
"Stack Fault",
|
|
"General Protection",
|
|
"Page Fault",
|
|
"(unknown trap)",
|
|
"x87 FPU Floating-Point Error",
|
|
"Alignment Check",
|
|
"Machine-Check",
|
|
"SIMD Floating-Point Exception"
|
|
};
|
|
|
|
if (trapno < sizeof(excnames)/sizeof(const char * const)) {
|
|
return excnames[trapno];
|
|
}
|
|
if (trapno >= IRQ_OFFSET && trapno < IRQ_OFFSET + 16) {
|
|
return "Hardware Interrupt";
|
|
}
|
|
return "(unknown trap)";
|
|
}
|
|
|
|
/* trap_in_kernel - test if trap happened in kernel */
|
|
bool
|
|
trap_in_kernel(struct trapframe *tf) {
|
|
return (tf->tf_cs == (uint16_t)KERNEL_CS);
|
|
}
|
|
|
|
static const char *IA32flags[] = {
|
|
"CF", NULL, "PF", NULL, "AF", NULL, "ZF", "SF",
|
|
"TF", "IF", "DF", "OF", NULL, NULL, "NT", NULL,
|
|
"RF", "VM", "AC", "VIF", "VIP", "ID", NULL, NULL,
|
|
};
|
|
|
|
void
|
|
print_trapframe(struct trapframe *tf) {
|
|
cprintf("trapframe at %p\n", tf);
|
|
print_regs(&tf->tf_regs);
|
|
cprintf(" ds 0x----%04x\n", tf->tf_ds);
|
|
cprintf(" es 0x----%04x\n", tf->tf_es);
|
|
cprintf(" fs 0x----%04x\n", tf->tf_fs);
|
|
cprintf(" gs 0x----%04x\n", tf->tf_gs);
|
|
cprintf(" trap 0x%08x %s\n", tf->tf_trapno, trapname(tf->tf_trapno));
|
|
cprintf(" err 0x%08x\n", tf->tf_err);
|
|
cprintf(" eip 0x%08x\n", tf->tf_eip);
|
|
cprintf(" cs 0x----%04x\n", tf->tf_cs);
|
|
cprintf(" flag 0x%08x ", tf->tf_eflags);
|
|
|
|
int i, j;
|
|
for (i = 0, j = 1; i < sizeof(IA32flags) / sizeof(IA32flags[0]); i ++, j <<= 1) {
|
|
if ((tf->tf_eflags & j) && IA32flags[i] != NULL) {
|
|
cprintf("%s,", IA32flags[i]);
|
|
}
|
|
}
|
|
cprintf("IOPL=%d\n", (tf->tf_eflags & FL_IOPL_MASK) >> 12);
|
|
|
|
if (!trap_in_kernel(tf)) {
|
|
cprintf(" esp 0x%08x\n", tf->tf_esp);
|
|
cprintf(" ss 0x----%04x\n", tf->tf_ss);
|
|
}
|
|
}
|
|
|
|
void
|
|
print_regs(struct pushregs *regs) {
|
|
cprintf(" edi 0x%08x\n", regs->reg_edi);
|
|
cprintf(" esi 0x%08x\n", regs->reg_esi);
|
|
cprintf(" ebp 0x%08x\n", regs->reg_ebp);
|
|
cprintf(" oesp 0x%08x\n", regs->reg_oesp);
|
|
cprintf(" ebx 0x%08x\n", regs->reg_ebx);
|
|
cprintf(" edx 0x%08x\n", regs->reg_edx);
|
|
cprintf(" ecx 0x%08x\n", regs->reg_ecx);
|
|
cprintf(" eax 0x%08x\n", regs->reg_eax);
|
|
}
|
|
|
|
static inline void
|
|
print_pgfault(struct trapframe *tf) {
|
|
/* error_code:
|
|
* bit 0 == 0 means no page found, 1 means protection fault
|
|
* bit 1 == 0 means read, 1 means write
|
|
* bit 2 == 0 means kernel, 1 means user
|
|
* */
|
|
cprintf("page fault at 0x%08x: %c/%c [%s].\n", rcr2(),
|
|
(tf->tf_err & 4) ? 'U' : 'K',
|
|
(tf->tf_err & 2) ? 'W' : 'R',
|
|
(tf->tf_err & 1) ? "protection fault" : "no page found");
|
|
}
|
|
|
|
static int
|
|
pgfault_handler(struct trapframe *tf) {
|
|
extern struct mm_struct *check_mm_struct;
|
|
if(check_mm_struct !=NULL) { //used for test check_swap
|
|
print_pgfault(tf);
|
|
}
|
|
struct mm_struct *mm;
|
|
if (check_mm_struct != NULL) {
|
|
assert(current == idleproc);
|
|
mm = check_mm_struct;
|
|
}
|
|
else {
|
|
if (current == NULL) {
|
|
print_trapframe(tf);
|
|
print_pgfault(tf);
|
|
panic("unhandled page fault.\n");
|
|
}
|
|
mm = current->mm;
|
|
}
|
|
return do_pgfault(mm, tf->tf_err, rcr2());
|
|
}
|
|
|
|
static volatile int in_swap_tick_event = 0;
|
|
extern struct mm_struct *check_mm_struct;
|
|
|
|
static void
|
|
trap_dispatch(struct trapframe *tf) {
|
|
char c;
|
|
|
|
int ret=0;
|
|
|
|
switch (tf->tf_trapno) {
|
|
case T_PGFLT: //page fault
|
|
if ((ret = pgfault_handler(tf)) != 0) {
|
|
print_trapframe(tf);
|
|
if (current == NULL) {
|
|
panic("handle pgfault failed. ret=%d\n", ret);
|
|
}
|
|
else {
|
|
if (trap_in_kernel(tf)) {
|
|
panic("handle pgfault failed in kernel mode. ret=%d\n", ret);
|
|
}
|
|
cprintf("killed by kernel.\n");
|
|
panic("handle user mode pgfault failed. ret=%d\n", ret);
|
|
do_exit(-E_KILLED);
|
|
}
|
|
}
|
|
break;
|
|
case T_SYSCALL:
|
|
syscall();
|
|
break;
|
|
case IRQ_OFFSET + IRQ_TIMER:
|
|
#if 0
|
|
LAB3 : If some page replacement algorithm(such as CLOCK PRA) need tick to change the priority of pages,
|
|
then you can add code here.
|
|
#endif
|
|
/* LAB1 YOUR CODE : STEP 3 */
|
|
/* handle the timer interrupt */
|
|
/* (1) After a timer interrupt, you should record this event using a global variable (increase it), such as ticks in kern/driver/clock.c
|
|
* (2) Every TICK_NUM cycle, you can print some info using a funciton, such as print_ticks().
|
|
* (3) Too Simple? Yes, I think so!
|
|
*/
|
|
/* LAB5 YOUR CODE */
|
|
/* you should upate you lab1 code (just add ONE or TWO lines of code):
|
|
* Every TICK_NUM cycle, you should set current process's current->need_resched = 1
|
|
*/
|
|
/* LAB6 YOUR CODE */
|
|
/* IMPORTANT FUNCTIONS:
|
|
* run_timer_list
|
|
*----------------------
|
|
* you should update your lab5 code (just add ONE or TWO lines of code):
|
|
* Every tick, you should update the system time, iterate the timers, and trigger the timers which are end to call scheduler.
|
|
* You can use one funcitons to finish all these things.
|
|
*/
|
|
ticks ++;
|
|
assert(current != NULL);
|
|
run_timer_list();
|
|
break;
|
|
case IRQ_OFFSET + IRQ_COM1:
|
|
//c = cons_getc();
|
|
//cprintf("serial [%03d] %c\n", c, c);
|
|
//break;
|
|
case IRQ_OFFSET + IRQ_KBD:
|
|
c = cons_getc();
|
|
//cprintf("kbd [%03d] %c\n", c, c);
|
|
{
|
|
extern void dev_stdin_write(char c);
|
|
dev_stdin_write(c);
|
|
}
|
|
break;
|
|
//LAB1 CHALLENGE 1 : YOUR CODE you should modify below codes.
|
|
case T_SWITCH_TOU:
|
|
case T_SWITCH_TOK:
|
|
panic("T_SWITCH_** ??\n");
|
|
break;
|
|
case IRQ_OFFSET + IRQ_IDE1:
|
|
case IRQ_OFFSET + IRQ_IDE2:
|
|
/* do nothing */
|
|
break;
|
|
default:
|
|
print_trapframe(tf);
|
|
if (current != NULL) {
|
|
cprintf("unhandled trap.\n");
|
|
do_exit(-E_KILLED);
|
|
}
|
|
// in kernel, it must be a mistake
|
|
panic("unexpected trap in kernel.\n");
|
|
|
|
}
|
|
}
|
|
|
|
/* *
|
|
* trap - handles or dispatches an exception/interrupt. if and when trap() returns,
|
|
* the code in kern/trap/trapentry.S restores the old CPU state saved in the
|
|
* trapframe and then uses the iret instruction to return from the exception.
|
|
* */
|
|
void
|
|
trap(struct trapframe *tf) {
|
|
// dispatch based on what type of trap occurred
|
|
// used for previous projects
|
|
if (current == NULL) {
|
|
trap_dispatch(tf);
|
|
}
|
|
else {
|
|
// keep a trapframe chain in stack
|
|
struct trapframe *otf = current->tf;
|
|
current->tf = tf;
|
|
|
|
bool in_kernel = trap_in_kernel(tf);
|
|
|
|
trap_dispatch(tf);
|
|
|
|
current->tf = otf;
|
|
if (!in_kernel) {
|
|
if (current->flags & PF_EXITING) {
|
|
do_exit(-E_KILLED);
|
|
}
|
|
if (current->need_resched) {
|
|
schedule();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|