#include <proc.h>
|
|
#include <kmalloc.h>
|
|
#include <string.h>
|
|
#include <sync.h>
|
|
#include <pmm.h>
|
|
#include <error.h>
|
|
#include <sched.h>
|
|
#include <elf.h>
|
|
#include <vmm.h>
|
|
#include <trap.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <unistd.h>
|
|
|
|
/* ------------- process/thread mechanism design&implementation -------------
|
|
(an simplified Linux process/thread mechanism )
|
|
introduction:
|
|
ucore implements a simple process/thread mechanism. process contains the independent memory sapce, at least one threads
|
|
for execution, the kernel data(for management), processor state (for context switch), files(in lab6), etc. ucore needs to
|
|
manage all these details efficiently. In ucore, a thread is just a special kind of process(share process's memory).
|
|
------------------------------
|
|
process state : meaning -- reason
|
|
PROC_UNINIT : uninitialized -- alloc_proc
|
|
PROC_SLEEPING : sleeping -- try_free_pages, do_wait, do_sleep
|
|
PROC_RUNNABLE : runnable(maybe running) -- proc_init, wakeup_proc,
|
|
PROC_ZOMBIE : almost dead -- do_exit
|
|
|
|
-----------------------------
|
|
process state changing:
|
|
|
|
alloc_proc RUNNING
|
|
+ +--<----<--+
|
|
+ + proc_run +
|
|
V +-->---->--+
|
|
PROC_UNINIT -- proc_init/wakeup_proc --> PROC_RUNNABLE -- try_free_pages/do_wait/do_sleep --> PROC_SLEEPING --
|
|
A + +
|
|
| +--- do_exit --> PROC_ZOMBIE +
|
|
+ +
|
|
-----------------------wakeup_proc----------------------------------
|
|
-----------------------------
|
|
process relations
|
|
parent: proc->parent (proc is children)
|
|
children: proc->cptr (proc is parent)
|
|
older sibling: proc->optr (proc is younger sibling)
|
|
younger sibling: proc->yptr (proc is older sibling)
|
|
-----------------------------
|
|
related syscall for process:
|
|
SYS_exit : process exit, -->do_exit
|
|
SYS_fork : create child process, dup mm -->do_fork-->wakeup_proc
|
|
SYS_wait : wait process -->do_wait
|
|
SYS_exec : after fork, process execute a program -->load a program and refresh the mm
|
|
SYS_clone : create child thread -->do_fork-->wakeup_proc
|
|
SYS_yield : process flag itself need resecheduling, -- proc->need_sched=1, then scheduler will rescheule this process
|
|
SYS_sleep : process sleep -->do_sleep
|
|
SYS_kill : kill process -->do_kill-->proc->flags |= PF_EXITING
|
|
-->wakeup_proc-->do_wait-->do_exit
|
|
SYS_getpid : get the process's pid
|
|
|
|
*/
|
|
|
|
// the process set's list
|
|
list_entry_t proc_list;
|
|
|
|
#define HASH_SHIFT 10
|
|
#define HASH_LIST_SIZE (1 << HASH_SHIFT)
|
|
#define pid_hashfn(x) (hash32(x, HASH_SHIFT))
|
|
|
|
// has list for process set based on pid
|
|
static list_entry_t hash_list[HASH_LIST_SIZE];
|
|
|
|
// idle proc
|
|
struct proc_struct *idleproc = NULL;
|
|
// init proc
|
|
struct proc_struct *initproc = NULL;
|
|
// current proc
|
|
struct proc_struct *current = NULL;
|
|
|
|
static int nr_process = 0;
|
|
|
|
void kernel_thread_entry(void);
|
|
void forkrets(struct trapframe *tf);
|
|
void switch_to(struct context *from, struct context *to);
|
|
|
|
// alloc_proc - alloc a proc_struct and init all fields of proc_struct
|
|
static struct proc_struct *
|
|
alloc_proc(void) {
|
|
struct proc_struct *proc = kmalloc(sizeof(struct proc_struct));
|
|
if (proc != NULL) {
|
|
//LAB4:EXERCISE1 YOUR CODE
|
|
/*
|
|
* below fields in proc_struct need to be initialized
|
|
* enum proc_state state; // Process state
|
|
* int pid; // Process ID
|
|
* int runs; // the running times of Proces
|
|
* uintptr_t kstack; // Process kernel stack
|
|
* volatile bool need_resched; // bool value: need to be rescheduled to release CPU?
|
|
* struct proc_struct *parent; // the parent process
|
|
* struct mm_struct *mm; // Process's memory management field
|
|
* struct context context; // Switch here to run process
|
|
* struct trapframe *tf; // Trap frame for current interrupt
|
|
* uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT)
|
|
* uint32_t flags; // Process flag
|
|
* char name[PROC_NAME_LEN + 1]; // Process name
|
|
*/
|
|
//LAB5 YOUR CODE : (update LAB4 steps)
|
|
/*
|
|
* below fields(add in LAB5) in proc_struct need to be initialized
|
|
* uint32_t wait_state; // waiting state
|
|
* struct proc_struct *cptr, *yptr, *optr; // relations between processes
|
|
*/
|
|
proc->state = PROC_UNINIT;
|
|
proc->pid = -1;
|
|
proc->runs = 0;
|
|
proc->kstack = 0;
|
|
proc->need_resched = 0;
|
|
proc->parent = NULL;
|
|
proc->mm = NULL;
|
|
memset(&(proc->context), 0, sizeof(struct context));
|
|
proc->tf = NULL;
|
|
proc->cr3 = boot_cr3;
|
|
proc->flags = 0;
|
|
memset(proc->name, 0, PROC_NAME_LEN);
|
|
proc->wait_state = 0;
|
|
proc->cptr = proc->optr = proc->yptr = NULL;
|
|
proc->rq = NULL;
|
|
list_init(&(proc->run_link));
|
|
proc->time_slice = 0;
|
|
proc->lab6_run_pool.left = proc->lab6_run_pool.right = proc->lab6_run_pool.parent = NULL;
|
|
proc->lab6_stride = 0;
|
|
proc->lab6_priority = 0;
|
|
}
|
|
return proc;
|
|
}
|
|
|
|
// set_proc_name - set the name of proc
|
|
char *
|
|
set_proc_name(struct proc_struct *proc, const char *name) {
|
|
memset(proc->name, 0, sizeof(proc->name));
|
|
return memcpy(proc->name, name, PROC_NAME_LEN);
|
|
}
|
|
|
|
// get_proc_name - get the name of proc
|
|
char *
|
|
get_proc_name(struct proc_struct *proc) {
|
|
static char name[PROC_NAME_LEN + 1];
|
|
memset(name, 0, sizeof(name));
|
|
return memcpy(name, proc->name, PROC_NAME_LEN);
|
|
}
|
|
|
|
// set_links - set the relation links of process
|
|
static void
|
|
set_links(struct proc_struct *proc) {
|
|
list_add(&proc_list, &(proc->list_link));
|
|
proc->yptr = NULL;
|
|
if ((proc->optr = proc->parent->cptr) != NULL) {
|
|
proc->optr->yptr = proc;
|
|
}
|
|
proc->parent->cptr = proc;
|
|
nr_process ++;
|
|
}
|
|
|
|
// remove_links - clean the relation links of process
|
|
static void
|
|
remove_links(struct proc_struct *proc) {
|
|
list_del(&(proc->list_link));
|
|
if (proc->optr != NULL) {
|
|
proc->optr->yptr = proc->yptr;
|
|
}
|
|
if (proc->yptr != NULL) {
|
|
proc->yptr->optr = proc->optr;
|
|
}
|
|
else {
|
|
proc->parent->cptr = proc->optr;
|
|
}
|
|
nr_process --;
|
|
}
|
|
|
|
// get_pid - alloc a unique pid for process
|
|
static int
|
|
get_pid(void) {
|
|
static_assert(MAX_PID > MAX_PROCESS);
|
|
struct proc_struct *proc;
|
|
list_entry_t *list = &proc_list, *le;
|
|
static int next_safe = MAX_PID, last_pid = MAX_PID;
|
|
if (++ last_pid >= MAX_PID) {
|
|
last_pid = 1;
|
|
goto inside;
|
|
}
|
|
if (last_pid >= next_safe) {
|
|
inside:
|
|
next_safe = MAX_PID;
|
|
repeat:
|
|
le = list;
|
|
while ((le = list_next(le)) != list) {
|
|
proc = le2proc(le, list_link);
|
|
if (proc->pid == last_pid) {
|
|
if (++ last_pid >= next_safe) {
|
|
if (last_pid >= MAX_PID) {
|
|
last_pid = 1;
|
|
}
|
|
next_safe = MAX_PID;
|
|
goto repeat;
|
|
}
|
|
}
|
|
else if (proc->pid > last_pid && next_safe > proc->pid) {
|
|
next_safe = proc->pid;
|
|
}
|
|
}
|
|
}
|
|
return last_pid;
|
|
}
|
|
|
|
// proc_run - make process "proc" running on cpu
|
|
// NOTE: before call switch_to, should load base addr of "proc"'s new PDT
|
|
void
|
|
proc_run(struct proc_struct *proc) {
|
|
if (proc != current) {
|
|
bool intr_flag;
|
|
struct proc_struct *prev = current, *next = proc;
|
|
local_intr_save(intr_flag);
|
|
{
|
|
current = proc;
|
|
load_esp0(next->kstack + KSTACKSIZE);
|
|
lcr3(next->cr3);
|
|
switch_to(&(prev->context), &(next->context));
|
|
}
|
|
local_intr_restore(intr_flag);
|
|
}
|
|
}
|
|
|
|
// forkret -- the first kernel entry point of a new thread/process
|
|
// NOTE: the addr of forkret is setted in copy_thread function
|
|
// after switch_to, the current proc will execute here.
|
|
static void
|
|
forkret(void) {
|
|
forkrets(current->tf);
|
|
}
|
|
|
|
// hash_proc - add proc into proc hash_list
|
|
static void
|
|
hash_proc(struct proc_struct *proc) {
|
|
list_add(hash_list + pid_hashfn(proc->pid), &(proc->hash_link));
|
|
}
|
|
|
|
// unhash_proc - delete proc from proc hash_list
|
|
static void
|
|
unhash_proc(struct proc_struct *proc) {
|
|
list_del(&(proc->hash_link));
|
|
}
|
|
|
|
// find_proc - find proc frome proc hash_list according to pid
|
|
struct proc_struct *
|
|
find_proc(int pid) {
|
|
if (0 < pid && pid < MAX_PID) {
|
|
list_entry_t *list = hash_list + pid_hashfn(pid), *le = list;
|
|
while ((le = list_next(le)) != list) {
|
|
struct proc_struct *proc = le2proc(le, hash_link);
|
|
if (proc->pid == pid) {
|
|
return proc;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// kernel_thread - create a kernel thread using "fn" function
|
|
// NOTE: the contents of temp trapframe tf will be copied to
|
|
// proc->tf in do_fork-->copy_thread function
|
|
int
|
|
kernel_thread(int (*fn)(void *), void *arg, uint32_t clone_flags) {
|
|
struct trapframe tf;
|
|
memset(&tf, 0, sizeof(struct trapframe));
|
|
tf.tf_cs = KERNEL_CS;
|
|
tf.tf_ds = tf.tf_es = tf.tf_ss = KERNEL_DS;
|
|
tf.tf_regs.reg_ebx = (uint32_t)fn;
|
|
tf.tf_regs.reg_edx = (uint32_t)arg;
|
|
tf.tf_eip = (uint32_t)kernel_thread_entry;
|
|
return do_fork(clone_flags | CLONE_VM, 0, &tf);
|
|
}
|
|
|
|
// setup_kstack - alloc pages with size KSTACKPAGE as process kernel stack
|
|
static int
|
|
setup_kstack(struct proc_struct *proc) {
|
|
struct Page *page = alloc_pages(KSTACKPAGE);
|
|
if (page != NULL) {
|
|
proc->kstack = (uintptr_t)page2kva(page);
|
|
return 0;
|
|
}
|
|
return -E_NO_MEM;
|
|
}
|
|
|
|
// put_kstack - free the memory space of process kernel stack
|
|
static void
|
|
put_kstack(struct proc_struct *proc) {
|
|
free_pages(kva2page((void *)(proc->kstack)), KSTACKPAGE);
|
|
}
|
|
|
|
// setup_pgdir - alloc one page as PDT
|
|
static int
|
|
setup_pgdir(struct mm_struct *mm) {
|
|
struct Page *page;
|
|
if ((page = alloc_page()) == NULL) {
|
|
return -E_NO_MEM;
|
|
}
|
|
pde_t *pgdir = page2kva(page);
|
|
memcpy(pgdir, boot_pgdir, PGSIZE);
|
|
pgdir[PDX(VPT)] = PADDR(pgdir) | PTE_P | PTE_W;
|
|
mm->pgdir = pgdir;
|
|
return 0;
|
|
}
|
|
|
|
// put_pgdir - free the memory space of PDT
|
|
static void
|
|
put_pgdir(struct mm_struct *mm) {
|
|
free_page(kva2page(mm->pgdir));
|
|
}
|
|
|
|
// copy_mm - process "proc" duplicate OR share process "current"'s mm according clone_flags
|
|
// - if clone_flags & CLONE_VM, then "share" ; else "duplicate"
|
|
static int
|
|
copy_mm(uint32_t clone_flags, struct proc_struct *proc) {
|
|
struct mm_struct *mm, *oldmm = current->mm;
|
|
|
|
/* current is a kernel thread */
|
|
if (oldmm == NULL) {
|
|
return 0;
|
|
}
|
|
if (clone_flags & CLONE_VM) {
|
|
mm = oldmm;
|
|
goto good_mm;
|
|
}
|
|
|
|
int ret = -E_NO_MEM;
|
|
if ((mm = mm_create()) == NULL) {
|
|
goto bad_mm;
|
|
}
|
|
if (setup_pgdir(mm) != 0) {
|
|
goto bad_pgdir_cleanup_mm;
|
|
}
|
|
|
|
lock_mm(oldmm);
|
|
{
|
|
ret = dup_mmap(mm, oldmm);
|
|
}
|
|
unlock_mm(oldmm);
|
|
|
|
if (ret != 0) {
|
|
goto bad_dup_cleanup_mmap;
|
|
}
|
|
|
|
good_mm:
|
|
mm_count_inc(mm);
|
|
proc->mm = mm;
|
|
proc->cr3 = PADDR(mm->pgdir);
|
|
return 0;
|
|
bad_dup_cleanup_mmap:
|
|
exit_mmap(mm);
|
|
put_pgdir(mm);
|
|
bad_pgdir_cleanup_mm:
|
|
mm_destroy(mm);
|
|
bad_mm:
|
|
return ret;
|
|
}
|
|
|
|
// copy_thread - setup the trapframe on the process's kernel stack top and
|
|
// - setup the kernel entry point and stack of process
|
|
static void
|
|
copy_thread(struct proc_struct *proc, uintptr_t esp, struct trapframe *tf) {
|
|
proc->tf = (struct trapframe *)(proc->kstack + KSTACKSIZE) - 1;
|
|
*(proc->tf) = *tf;
|
|
proc->tf->tf_regs.reg_eax = 0;
|
|
proc->tf->tf_esp = esp;
|
|
proc->tf->tf_eflags |= FL_IF;
|
|
|
|
proc->context.eip = (uintptr_t)forkret;
|
|
proc->context.esp = (uintptr_t)(proc->tf);
|
|
}
|
|
|
|
/* do_fork - parent process for a new child process
|
|
* @clone_flags: used to guide how to clone the child process
|
|
* @stack: the parent's user stack pointer. if stack==0, It means to fork a kernel thread.
|
|
* @tf: the trapframe info, which will be copied to child process's proc->tf
|
|
*/
|
|
int
|
|
do_fork(uint32_t clone_flags, uintptr_t stack, struct trapframe *tf) {
|
|
int ret = -E_NO_FREE_PROC;
|
|
struct proc_struct *proc;
|
|
if (nr_process >= MAX_PROCESS) {
|
|
goto fork_out;
|
|
}
|
|
ret = -E_NO_MEM;
|
|
//LAB4:EXERCISE2 YOUR CODE
|
|
/*
|
|
* Some Useful MACROs, Functions and DEFINEs, you can use them in below implementation.
|
|
* MACROs or Functions:
|
|
* alloc_proc: create a proc struct and init fields (lab4:exercise1)
|
|
* setup_kstack: alloc pages with size KSTACKPAGE as process kernel stack
|
|
* copy_mm: process "proc" duplicate OR share process "current"'s mm according clone_flags
|
|
* if clone_flags & CLONE_VM, then "share" ; else "duplicate"
|
|
* copy_thread: setup the trapframe on the process's kernel stack top and
|
|
* setup the kernel entry point and stack of process
|
|
* hash_proc: add proc into proc hash_list
|
|
* get_pid: alloc a unique pid for process
|
|
* wakeup_proc: set proc->state = PROC_RUNNABLE
|
|
* VARIABLES:
|
|
* proc_list: the process set's list
|
|
* nr_process: the number of process set
|
|
*/
|
|
|
|
// 1. call alloc_proc to allocate a proc_struct
|
|
// 2. call setup_kstack to allocate a kernel stack for child process
|
|
// 3. call copy_mm to dup OR share mm according clone_flag
|
|
// 4. call copy_thread to setup tf & context in proc_struct
|
|
// 5. insert proc_struct into hash_list && proc_list
|
|
// 6. call wakeup_proc to make the new child process RUNNABLE
|
|
// 7. set ret vaule using child proc's pid
|
|
|
|
//LAB5 YOUR CODE : (update LAB4 steps)
|
|
/* Some Functions
|
|
* set_links: set the relation links of process. ALSO SEE: remove_links: lean the relation links of process
|
|
* -------------------
|
|
* update step 1: set child proc's parent to current process, make sure current process's wait_state is 0
|
|
* update step 5: insert proc_struct into hash_list && proc_list, set the relation links of process
|
|
*/
|
|
if ((proc = alloc_proc()) == NULL) {
|
|
goto fork_out;
|
|
}
|
|
|
|
proc->parent = current;
|
|
assert(current->wait_state == 0);
|
|
|
|
if (setup_kstack(proc) != 0) {
|
|
goto bad_fork_cleanup_proc;
|
|
}
|
|
if (copy_mm(clone_flags, proc) != 0) {
|
|
goto bad_fork_cleanup_kstack;
|
|
}
|
|
copy_thread(proc, stack, tf);
|
|
|
|
bool intr_flag;
|
|
local_intr_save(intr_flag);
|
|
{
|
|
proc->pid = get_pid();
|
|
hash_proc(proc);
|
|
set_links(proc);
|
|
|
|
}
|
|
local_intr_restore(intr_flag);
|
|
|
|
wakeup_proc(proc);
|
|
|
|
ret = proc->pid;
|
|
fork_out:
|
|
return ret;
|
|
|
|
bad_fork_cleanup_kstack:
|
|
put_kstack(proc);
|
|
bad_fork_cleanup_proc:
|
|
kfree(proc);
|
|
goto fork_out;
|
|
}
|
|
|
|
// do_exit - called by sys_exit
|
|
// 1. call exit_mmap & put_pgdir & mm_destroy to free the almost all memory space of process
|
|
// 2. set process' state as PROC_ZOMBIE, then call wakeup_proc(parent) to ask parent reclaim itself.
|
|
// 3. call scheduler to switch to other process
|
|
int
|
|
do_exit(int error_code) {
|
|
if (current == idleproc) {
|
|
panic("idleproc exit.\n");
|
|
}
|
|
if (current == initproc) {
|
|
panic("initproc exit.\n");
|
|
}
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
if (mm != NULL) {
|
|
lcr3(boot_cr3);
|
|
if (mm_count_dec(mm) == 0) {
|
|
exit_mmap(mm);
|
|
put_pgdir(mm);
|
|
mm_destroy(mm);
|
|
}
|
|
current->mm = NULL;
|
|
}
|
|
current->state = PROC_ZOMBIE;
|
|
current->exit_code = error_code;
|
|
|
|
bool intr_flag;
|
|
struct proc_struct *proc;
|
|
local_intr_save(intr_flag);
|
|
{
|
|
proc = current->parent;
|
|
if (proc->wait_state == WT_CHILD) {
|
|
wakeup_proc(proc);
|
|
}
|
|
while (current->cptr != NULL) {
|
|
proc = current->cptr;
|
|
current->cptr = proc->optr;
|
|
|
|
proc->yptr = NULL;
|
|
if ((proc->optr = initproc->cptr) != NULL) {
|
|
initproc->cptr->yptr = proc;
|
|
}
|
|
proc->parent = initproc;
|
|
initproc->cptr = proc;
|
|
if (proc->state == PROC_ZOMBIE) {
|
|
if (initproc->wait_state == WT_CHILD) {
|
|
wakeup_proc(initproc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
local_intr_restore(intr_flag);
|
|
|
|
schedule();
|
|
panic("do_exit will not return!! %d.\n", current->pid);
|
|
}
|
|
|
|
/* load_icode - load the content of binary program(ELF format) as the new content of current process
|
|
* @binary: the memory addr of the content of binary program
|
|
* @size: the size of the content of binary program
|
|
*/
|
|
static int
|
|
load_icode(unsigned char *binary, size_t size) {
|
|
if (current->mm != NULL) {
|
|
panic("load_icode: current->mm must be empty.\n");
|
|
}
|
|
|
|
int ret = -E_NO_MEM;
|
|
struct mm_struct *mm;
|
|
//(1) create a new mm for current process
|
|
if ((mm = mm_create()) == NULL) {
|
|
goto bad_mm;
|
|
}
|
|
//(2) create a new PDT, and mm->pgdir= kernel virtual addr of PDT
|
|
if (setup_pgdir(mm) != 0) {
|
|
goto bad_pgdir_cleanup_mm;
|
|
}
|
|
//(3) copy TEXT/DATA section, build BSS parts in binary to memory space of process
|
|
struct Page *page;
|
|
//(3.1) get the file header of the bianry program (ELF format)
|
|
struct elfhdr *elf = (struct elfhdr *)binary;
|
|
//(3.2) get the entry of the program section headers of the bianry program (ELF format)
|
|
struct proghdr *ph = (struct proghdr *)(binary + elf->e_phoff);
|
|
//(3.3) This program is valid?
|
|
if (elf->e_magic != ELF_MAGIC) {
|
|
ret = -E_INVAL_ELF;
|
|
goto bad_elf_cleanup_pgdir;
|
|
}
|
|
|
|
uint32_t vm_flags, perm;
|
|
struct proghdr *ph_end = ph + elf->e_phnum;
|
|
for (; ph < ph_end; ph ++) {
|
|
//(3.4) find every program section headers
|
|
if (ph->p_type != ELF_PT_LOAD) {
|
|
continue ;
|
|
}
|
|
if (ph->p_filesz > ph->p_memsz) {
|
|
ret = -E_INVAL_ELF;
|
|
goto bad_cleanup_mmap;
|
|
}
|
|
if (ph->p_filesz == 0) {
|
|
continue ;
|
|
}
|
|
//(3.5) call mm_map fun to setup the new vma ( ph->p_va, ph->p_memsz)
|
|
vm_flags = 0, perm = PTE_U;
|
|
if (ph->p_flags & ELF_PF_X) vm_flags |= VM_EXEC;
|
|
if (ph->p_flags & ELF_PF_W) vm_flags |= VM_WRITE;
|
|
if (ph->p_flags & ELF_PF_R) vm_flags |= VM_READ;
|
|
if (vm_flags & VM_WRITE) perm |= PTE_W;
|
|
if ((ret = mm_map(mm, ph->p_va, ph->p_memsz, vm_flags, NULL)) != 0) {
|
|
goto bad_cleanup_mmap;
|
|
}
|
|
unsigned char *from = binary + ph->p_offset;
|
|
size_t off, size;
|
|
uintptr_t start = ph->p_va, end, la = ROUNDDOWN(start, PGSIZE);
|
|
|
|
ret = -E_NO_MEM;
|
|
|
|
//(3.6) alloc memory, and copy the contents of every program section (from, from+end) to process's memory (la, la+end)
|
|
end = ph->p_va + ph->p_filesz;
|
|
//(3.6.1) copy TEXT/DATA section of bianry program
|
|
while (start < end) {
|
|
if ((page = pgdir_alloc_page(mm->pgdir, la, perm)) == NULL) {
|
|
goto bad_cleanup_mmap;
|
|
}
|
|
off = start - la, size = PGSIZE - off, la += PGSIZE;
|
|
if (end < la) {
|
|
size -= la - end;
|
|
}
|
|
memcpy(page2kva(page) + off, from, size);
|
|
start += size, from += size;
|
|
}
|
|
|
|
//(3.6.2) build BSS section of binary program
|
|
end = ph->p_va + ph->p_memsz;
|
|
if (start < la) {
|
|
/* ph->p_memsz == ph->p_filesz */
|
|
if (start == end) {
|
|
continue ;
|
|
}
|
|
off = start + PGSIZE - la, size = PGSIZE - off;
|
|
if (end < la) {
|
|
size -= la - end;
|
|
}
|
|
memset(page2kva(page) + off, 0, size);
|
|
start += size;
|
|
assert((end < la && start == end) || (end >= la && start == la));
|
|
}
|
|
while (start < end) {
|
|
if ((page = pgdir_alloc_page(mm->pgdir, la, perm)) == NULL) {
|
|
goto bad_cleanup_mmap;
|
|
}
|
|
off = start - la, size = PGSIZE - off, la += PGSIZE;
|
|
if (end < la) {
|
|
size -= la - end;
|
|
}
|
|
memset(page2kva(page) + off, 0, size);
|
|
start += size;
|
|
}
|
|
}
|
|
//(4) build user stack memory
|
|
vm_flags = VM_READ | VM_WRITE | VM_STACK;
|
|
if ((ret = mm_map(mm, USTACKTOP - USTACKSIZE, USTACKSIZE, vm_flags, NULL)) != 0) {
|
|
goto bad_cleanup_mmap;
|
|
}
|
|
assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-PGSIZE , PTE_USER) != NULL);
|
|
assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-2*PGSIZE , PTE_USER) != NULL);
|
|
assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-3*PGSIZE , PTE_USER) != NULL);
|
|
assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-4*PGSIZE , PTE_USER) != NULL);
|
|
|
|
//(5) set current process's mm, sr3, and set CR3 reg = physical addr of Page Directory
|
|
mm_count_inc(mm);
|
|
current->mm = mm;
|
|
current->cr3 = PADDR(mm->pgdir);
|
|
lcr3(PADDR(mm->pgdir));
|
|
|
|
//(6) setup trapframe for user environment
|
|
struct trapframe *tf = current->tf;
|
|
memset(tf, 0, sizeof(struct trapframe));
|
|
/* LAB5:EXERCISE1 YOUR CODE
|
|
* should set tf_cs,tf_ds,tf_es,tf_ss,tf_esp,tf_eip,tf_eflags
|
|
* NOTICE: If we set trapframe correctly, then the user level process can return to USER MODE from kernel. So
|
|
* tf_cs should be USER_CS segment (see memlayout.h)
|
|
* tf_ds=tf_es=tf_ss should be USER_DS segment
|
|
* tf_esp should be the top addr of user stack (USTACKTOP)
|
|
* tf_eip should be the entry point of this binary program (elf->e_entry)
|
|
* tf_eflags should be set to enable computer to produce Interrupt
|
|
*/
|
|
tf->tf_cs = USER_CS;
|
|
tf->tf_ds = tf->tf_es = tf->tf_ss = USER_DS;
|
|
tf->tf_esp = USTACKTOP;
|
|
tf->tf_eip = elf->e_entry;
|
|
tf->tf_eflags = FL_IF;
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
bad_cleanup_mmap:
|
|
exit_mmap(mm);
|
|
bad_elf_cleanup_pgdir:
|
|
put_pgdir(mm);
|
|
bad_pgdir_cleanup_mm:
|
|
mm_destroy(mm);
|
|
bad_mm:
|
|
goto out;
|
|
}
|
|
|
|
// do_execve - call exit_mmap(mm)&put_pgdir(mm) to reclaim memory space of current process
|
|
// - call load_icode to setup new memory space accroding binary prog.
|
|
int
|
|
do_execve(const char *name, size_t len, unsigned char *binary, size_t size) {
|
|
struct mm_struct *mm = current->mm;
|
|
if (!user_mem_check(mm, (uintptr_t)name, len, 0)) {
|
|
return -E_INVAL;
|
|
}
|
|
if (len > PROC_NAME_LEN) {
|
|
len = PROC_NAME_LEN;
|
|
}
|
|
|
|
char local_name[PROC_NAME_LEN + 1];
|
|
memset(local_name, 0, sizeof(local_name));
|
|
memcpy(local_name, name, len);
|
|
|
|
if (mm != NULL) {
|
|
lcr3(boot_cr3);
|
|
if (mm_count_dec(mm) == 0) {
|
|
exit_mmap(mm);
|
|
put_pgdir(mm);
|
|
mm_destroy(mm);
|
|
}
|
|
current->mm = NULL;
|
|
}
|
|
int ret;
|
|
if ((ret = load_icode(binary, size)) != 0) {
|
|
goto execve_exit;
|
|
}
|
|
set_proc_name(current, local_name);
|
|
return 0;
|
|
|
|
execve_exit:
|
|
do_exit(ret);
|
|
panic("already exit: %e.\n", ret);
|
|
}
|
|
|
|
// do_yield - ask the scheduler to reschedule
|
|
int
|
|
do_yield(void) {
|
|
current->need_resched = 1;
|
|
return 0;
|
|
}
|
|
|
|
// do_wait - wait one OR any children with PROC_ZOMBIE state, and free memory space of kernel stack
|
|
// - proc struct of this child.
|
|
// NOTE: only after do_wait function, all resources of the child proces are free.
|
|
int
|
|
do_wait(int pid, int *code_store) {
|
|
struct mm_struct *mm = current->mm;
|
|
if (code_store != NULL) {
|
|
if (!user_mem_check(mm, (uintptr_t)code_store, sizeof(int), 1)) {
|
|
return -E_INVAL;
|
|
}
|
|
}
|
|
|
|
struct proc_struct *proc;
|
|
bool intr_flag, haskid;
|
|
repeat:
|
|
haskid = 0;
|
|
if (pid != 0) {
|
|
proc = find_proc(pid);
|
|
if (proc != NULL && proc->parent == current) {
|
|
haskid = 1;
|
|
if (proc->state == PROC_ZOMBIE) {
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
proc = current->cptr;
|
|
for (; proc != NULL; proc = proc->optr) {
|
|
haskid = 1;
|
|
if (proc->state == PROC_ZOMBIE) {
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
if (haskid) {
|
|
current->state = PROC_SLEEPING;
|
|
current->wait_state = WT_CHILD;
|
|
schedule();
|
|
if (current->flags & PF_EXITING) {
|
|
do_exit(-E_KILLED);
|
|
}
|
|
goto repeat;
|
|
}
|
|
return -E_BAD_PROC;
|
|
|
|
found:
|
|
if (proc == idleproc || proc == initproc) {
|
|
panic("wait idleproc or initproc.\n");
|
|
}
|
|
if (code_store != NULL) {
|
|
*code_store = proc->exit_code;
|
|
}
|
|
local_intr_save(intr_flag);
|
|
{
|
|
unhash_proc(proc);
|
|
remove_links(proc);
|
|
}
|
|
local_intr_restore(intr_flag);
|
|
put_kstack(proc);
|
|
kfree(proc);
|
|
return 0;
|
|
}
|
|
|
|
// do_kill - kill process with pid by set this process's flags with PF_EXITING
|
|
int
|
|
do_kill(int pid) {
|
|
struct proc_struct *proc;
|
|
if ((proc = find_proc(pid)) != NULL) {
|
|
if (!(proc->flags & PF_EXITING)) {
|
|
proc->flags |= PF_EXITING;
|
|
if (proc->wait_state & WT_INTERRUPTED) {
|
|
wakeup_proc(proc);
|
|
}
|
|
return 0;
|
|
}
|
|
return -E_KILLED;
|
|
}
|
|
return -E_INVAL;
|
|
}
|
|
|
|
// kernel_execve - do SYS_exec syscall to exec a user program called by user_main kernel_thread
|
|
static int
|
|
kernel_execve(const char *name, unsigned char *binary, size_t size) {
|
|
int ret, len = strlen(name);
|
|
asm volatile (
|
|
"int %1;"
|
|
: "=a" (ret)
|
|
: "i" (T_SYSCALL), "0" (SYS_exec), "d" (name), "c" (len), "b" (binary), "D" (size)
|
|
: "memory");
|
|
return ret;
|
|
}
|
|
|
|
#define __KERNEL_EXECVE(name, binary, size) ({ \
|
|
cprintf("kernel_execve: pid = %d, name = \"%s\".\n", \
|
|
current->pid, name); \
|
|
kernel_execve(name, binary, (size_t)(size)); \
|
|
})
|
|
|
|
#define KERNEL_EXECVE(x) ({ \
|
|
extern unsigned char _binary_obj___user_##x##_out_start[], \
|
|
_binary_obj___user_##x##_out_size[]; \
|
|
__KERNEL_EXECVE(#x, _binary_obj___user_##x##_out_start, \
|
|
_binary_obj___user_##x##_out_size); \
|
|
})
|
|
|
|
#define __KERNEL_EXECVE2(x, xstart, xsize) ({ \
|
|
extern unsigned char xstart[], xsize[]; \
|
|
__KERNEL_EXECVE(#x, xstart, (size_t)xsize); \
|
|
})
|
|
|
|
#define KERNEL_EXECVE2(x, xstart, xsize) __KERNEL_EXECVE2(x, xstart, xsize)
|
|
|
|
// user_main - kernel thread used to exec a user program
|
|
static int
|
|
user_main(void *arg) {
|
|
#ifdef TEST
|
|
KERNEL_EXECVE2(TEST, TESTSTART, TESTSIZE);
|
|
#else
|
|
KERNEL_EXECVE(exit);
|
|
#endif
|
|
panic("user_main execve failed.\n");
|
|
}
|
|
|
|
// init_main - the second kernel thread used to create user_main kernel threads
|
|
static int
|
|
init_main(void *arg) {
|
|
size_t nr_free_pages_store = nr_free_pages();
|
|
size_t kernel_allocated_store = kallocated();
|
|
|
|
int pid = kernel_thread(user_main, NULL, 0);
|
|
if (pid <= 0) {
|
|
panic("create user_main failed.\n");
|
|
}
|
|
extern void read_write_sync(void);
|
|
read_write_sync(); // check philosopher sync problem
|
|
|
|
while (do_wait(0, NULL) == 0) {
|
|
schedule();
|
|
}
|
|
|
|
cprintf("all user-mode processes have quit.\n");
|
|
assert(initproc->cptr == NULL && initproc->yptr == NULL && initproc->optr == NULL);
|
|
assert(nr_process == 2);
|
|
assert(list_next(&proc_list) == &(initproc->list_link));
|
|
assert(list_prev(&proc_list) == &(initproc->list_link));
|
|
assert(nr_free_pages_store == nr_free_pages());
|
|
assert(kernel_allocated_store == kallocated());
|
|
cprintf("init check memory pass.\n");
|
|
return 0;
|
|
}
|
|
|
|
// proc_init - set up the first kernel thread idleproc "idle" by itself and
|
|
// - create the second kernel thread init_main
|
|
void
|
|
proc_init(void) {
|
|
int i;
|
|
|
|
list_init(&proc_list);
|
|
for (i = 0; i < HASH_LIST_SIZE; i ++) {
|
|
list_init(hash_list + i);
|
|
}
|
|
|
|
if ((idleproc = alloc_proc()) == NULL) {
|
|
panic("cannot alloc idleproc.\n");
|
|
}
|
|
|
|
idleproc->pid = 0;
|
|
idleproc->state = PROC_RUNNABLE;
|
|
idleproc->kstack = (uintptr_t)bootstack;
|
|
idleproc->need_resched = 1;
|
|
set_proc_name(idleproc, "idle");
|
|
nr_process ++;
|
|
|
|
current = idleproc;
|
|
|
|
int pid = kernel_thread(init_main, NULL, 0);
|
|
if (pid <= 0) {
|
|
panic("create init_main failed.\n");
|
|
}
|
|
|
|
initproc = find_proc(pid);
|
|
set_proc_name(initproc, "init");
|
|
|
|
assert(idleproc != NULL && idleproc->pid == 0);
|
|
assert(initproc != NULL && initproc->pid == 1);
|
|
}
|
|
|
|
// cpu_idle - at the end of kern_init, the first kernel thread idleproc will do below works
|
|
void
|
|
cpu_idle(void) {
|
|
while (1) {
|
|
if (current->need_resched) {
|
|
schedule();
|
|
}
|
|
}
|
|
}
|
|
|
|
//FOR LAB6, set the process's priority (bigger value will get more CPU time)
|
|
void
|
|
lab6_set_priority(uint32_t priority)
|
|
{
|
|
if (priority == 0)
|
|
current->lab6_priority = 1;
|
|
else current->lab6_priority = priority;
|
|
}
|
|
|
|
// do_sleep - set current process state to sleep and add timer with "time"
|
|
// - then call scheduler. if process run again, delete timer first.
|
|
int
|
|
do_sleep(unsigned int time) {
|
|
if (time == 0) {
|
|
return 0;
|
|
}
|
|
bool intr_flag;
|
|
local_intr_save(intr_flag);
|
|
timer_t __timer, *timer = timer_init(&__timer, current, time);
|
|
current->state = PROC_SLEEPING;
|
|
current->wait_state = WT_TIMER;
|
|
add_timer(timer);
|
|
local_intr_restore(intr_flag);
|
|
|
|
schedule();
|
|
|
|
del_timer(timer);
|
|
return 0;
|
|
}
|