
1

Operating Systems

 Department of Computer Science & Technology
 Tsinghua University

 Lecture 7-8
 Processes/Thread Management

2

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

3

What is a Process?

An OS abstraction that supports running programs
Π Basic unit of execution in an operating system

A process is a program during execution.
Π Program = static file (image)
Π Process = executing program = program + execution state.

Different processes may run several instances of the same
program

Π I run ls, you run ls – same program, different processes

At a minimum, process execution requires following
resources:

Π Memory to contain the program code and data
Π A set of CPU registers to support execution

4

From Program to Process

We write a program in e.g., C.
A compiler turns that program into an instruction list.
A linker builds an executable file (code + data)
A loader loads the executable file into memory (make ready to run)

void X (int b) {
 if(b == 1) {
…
int main() {
 int a = 2;
 X(a);
}

Code

Header

Initialized data

Executable FileSource Code

Compile+Link

5

Process in Memory

void X (int b) {
 if(b == 1) {
…
int main() {
 int a = 2;
 X(a);
}

What you wrote What is in memory.

void X (int b) {
 if(b == 1) {
…
int main() {
 int a = 2;
 X(a);
} Code

main; a = 2

X; b = 2

Heap

Stack

6

Anatomy of a Process

Code

Header

Initialized data

Executable File Code

Initialized data

Heap

Stack

DLL’s

mapped segments

Process’s
address space

Load

7

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

8

Keeping track of a process in OS

A process has code.
Π OS must track program counter (code location).

A process has a stack.
Π OS must track stack pointer.

OS stores state of processes’ computation in a
process control block (PCB).

Π E.g., each process has an identifier (process identifier,
or PID)

Data (program instructions, stack & heap) resides
in memory, metadata is in PCB.

9

Process Control Block

Code

Initialized data

Heap

Stack

DLL’s

mapped segments

Process’s
address space

PC
SP

Other Registers
PID
UID

Scheduling Priority
List of open files

…

PC
SP

Other Registers
PID
UID

Scheduling Priority
List of open files

…

PCB

10

Processes and Process Management
Details for running a program

A program consists of code and data

On running a program, the loader:
Π reads and interprets the executable file
Π sets up the process’s memory to contain the code & data from executable
Π pushes “argc”, “argv” on the stack
Π sets the CPU registers properly & calls “_start()”

Program starts running at _start()
_start(args) {

ret = main(args);
exit(ret)

}
we say “process” is now running, and no longer think of “program”

When main() returns, OS calls “exit()” which destroys the process and
returns all resources

11

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

12

Process Life Cycle

Processes are always either Running, Ready (to execute) or
Waiting (for an event to occur)

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

13

Process Life Cycle

Process is created at Start and transitions to Ready when it
becomes runnable

ReadyReady

StartStart

14

Process Life Cycle

Process transitions from Ready to Running when kernel
schedules it

RunningRunningReadyReady

StartStart

15

Process Life Cycle

Process transitions from Running to Waiting when it is
blocked, waiting for an event to occur (e.g., waiting for an
I/O to finish)

RunningRunningReadyReady

WaitingWaiting

StartStart

16

Process Life Cycle

Process transitions from Waiting to Ready when the event
occurs (e.g., I/O completion)

RunningRunningReadyReady

WaitingWaiting

StartStart

17

Process Life Cycle

Process transitions from Running to Ready on an interrupt
and pre-emptive scheduling

RunningRunningReadyReady

WaitingWaiting

StartStart

18

Process Life Cycle

Process transitions from Running to Done on exit()

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

19

Example Process State Transition

What happens on a sleep() system call?

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

20

Process Contexts (process sleep)

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...
Program 1 Program 2OS

I/O
Device

k: sleep()

k+1:

add_timer()

Time arrive interrupt

main{

main{

}

sleep{

}

}

schedule()

Memory

save
state
save
state schedule()

restore
state

restore
state

save
state
save
state

21

Outline

Background
The Concept of Thread
Example Multithreaded Programs
Thread Implementations
 Kernel Threading
 User-level Threading

Multithreading in Real Life
 Windows Thread
 Posix Thread

Multiple thread and CPU Architecture
 Instruction-Level Parallelism
 Data-Level Parallelism
 Thread-Level Parallelism

22

The Notion of Concurrency

“Thread” of execution
 Sequential execution of a stream of instructions at a CPU

Uniprogramming: one thread at a time
 Early OS (MSDOS, etc.)

Multiprogramming: multiple threads at a time
 Modern OS
 Sometimes called “multitasking”

The basic problem of concurrency: multiplexing
 Hardware: limited set of resources (CPU, memory, I/O)
 Multiprogramming: each thread thinks it owns the whole thing
 OS has to manage concurrency

23

Managing Space

Hardware

OS abstractions: Address Space, Virtual Memory

P1

P2

P3

Kernel

Operating System

0 232

0 232

0 232

0 232

Cache MMU

0 m M>>m

isolation
sharingOS Memory Management Subsystem

24

Managing Time

TimeHardware

OS abstraction: Process, Thread

P1

P2

P3

Kernel

Operating System

system call (user I/O)

interrupt (I/O done)

interrupt exception

interrupt (timer)

waiting ready

readyready

ready

ready

waiting

OS Process Management Subsystem

25

Before …

Process = Program + Execution State
 Process is a sequential execution in its own address space

PCB (Process Control Block)
 Kernel data structure to manage processes

Process life cycle
 Ready, Running, Waiting

Context and context switch
 Save the execution state

API
 fork() and exec()

RunningReady

Waiting

Start Done

unused

26

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

27

Two Concepts in a “Process”

The “Process” abstraction
 Process is a sequential execution in its own address space
 It combines two concepts: concurrency and protection

Concurrency
 A “thread” of execution independent of other processes

Protection
 Each process defines an address space, which identifies all

addresses that can be touched by the process

From Process to Thread
 Thread: a sequential execution of a program (or a stream of

instructions), in some address space
 Separate the concepts of concurrency from protection

28

The Concept of Thread

An OS abstraction
 A sequential execution of a stream of instructions

Resources associated with thread
 Program Counter (PC), Stack Pointer (SP), plus a set of other CPU

registers & flags
 Each thread must have its own stack

CPU registers

PC SP

stream
 of instructions

stack… …

29

Single and Multithreaded Processes

Maximum one thread per process (address
space)
Example: traditional Unix (no concept of
thread)
But doesn’t prevent user to add own thread
support in user program (user-level threading)

Support more than one threads
per process
A single program made up of a
number of different concurrent
activities

30

From Process to Thread

Roughly, Process = Thread(s) + Address Space
 One or more threads in a single address space
 Thread: encapsulate concurrency
 Address space: encapsulate protection

Usually need OS support for threads
 Managing threads
 Scheduling/switching among threads

Example systems that support threads:
 OS-supported: Sun’s LWP, POSIX’s threads
 Language-supported: Modula-3, Java, ErLang

31

Thread States

Individual state for each thread
 CPU registers (must save/restore during context switch)
 Stack (how do we save/restore this?)

Shared by all threads in a process
 Contents of memory (MMU translation states)
 I/O states
 Other OS book keeping data (open files, network connections, etc)

Threads are lightweight (c.f. process)
 No thread-specific heap or data segment (unlike process)
 Therefore, context switching between threads is much cheaper than

for a process

32

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

33

Example Multithreaded Programs

Server programs
 Web servers, file servers, network servers, database servers,

application servers, etc.
 Why multithreading? concurrent requests from network, from

concurrent users, etc.

Embedded systems
 Elevators, machines, etc.
 Single program, multiple concurrent operations

Operating system kernel?
 Yes for most modern OS
 Have to deal with concurrent requests

34

Multithreading

Why multithreaded programs?
 Single program, multiple concurrent operations
 Have to serve multiple requests, multiple users
 Take advantage of algorithmic parallelism

Technology trend: concurrent programming
 The world is going multi-core
 Parallel programming: split program into multiple threads for

performance gain

Multiple threads or multiple processes?
 Depends.

35

Web Server Example

Non-threaded version
Loop {

block for new connection;
ForkNewProcess(WebServer, new_connection);

}

Threaded version
Loop {

block for new connection;
ForkNewThread(new_connection);

}

Advantages
 Share file caches kept in memory, results of CGI scripts, etc.
 Low per-request overhead (threads are much cheaper to create than

process)

36

Threads vs. Processes

Threads
No data segment or heap

Multiple can coexist in a
process
Share code, data, heap and I/0
Have own stack and registers,
but no isolation from other
threads in the same process
Inexpensive to create
Inexpensive context switching

Processes
Have data/code/heap and other
segments
Include at least one thread

Have own address space,
isolated from other processes’

Expensive to create
Expensive context switching

37

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

38

Thread Implementations

Kernel multithreading
 Operating system supports multiple threads per process
 OS kernel manage and schedule the threads

User-level multithreading
 User program implements its own threading with some user-space

threading library
 System may or may not have kernel threading, but kernel does not

know about the user-level threads

Chip-level multithreading
 Architecture (Hardware) support for multithreading

39

Kernel Threading

New kernel data structure: TCB (Thread Control Block)
 Execution state: PC, SP, CPU registers
 Scheduling info: lifecycle, priority, etc.
 Pointer to enclosing process (PCB)
 Plus others

Like process, thread has state (in lifecycle) and will be
scheduled by CPU scheduler

40

Threads’ Life Cycle

Threads (just like processes) go through a sequence of start, ready,
running, waiting, and done states

RunningReady

Waiting

Start Done

unused

41

Implementing Thread Support in OS Kernel

PCB contains process-
specific information
 Owner, PID, heap pointer,

priority, active thread, and
pointers to thread information

TCB contains thread-
specific information
 SP, PC, CPU registers thread

state, pointer to PCB, …

Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for
Thread2

42

Implementing Threads

CreateThread(pointer_to_procedure, arg0, …) {
// allocate a new TCB and stack
 TCB tcb = new TCB();
 Stack stack = new Stack();
// initialize TCB and stack with initial register values and address of first

instruction
tcb.pc = Stub;
tcb.stack = stack;
tcb.arg0reg = pointer_to_procedure;
tcb.arg1reg = arg0;

 …
// Tell the dispatcher about the newly created thread

ReadyQ.add(tcb);
}

Stub(proc, arg0, arg1, …) {
(*proc)(arg0, arg1, …);
DeleteCurrentThread();

}

43

Summary of Threads

Process

Kernel
data
structure

PCB

TCB

PCB

TCB TCBTCB

PCB PCB
Single-threading

OS kernel

Multi-threading
OS kernel

(virtually all modern OS)

44

User-level Threading

Motivation
 Threads are a useful programming abstraction
 Implement thread creation/scheduling using procedure calls to a

user-level library rather than system calls

User-level threading
 User-level library implementations for

尌 CreateThread(), DestroyThread(), Yield(), …
 User-level library performs the same set of actions of

corresponding system calls
 Main difference: thread management is under the control of user-

level library

What happens if a user-level thread makes a system call?

45

User-level Threading

Process

Kernel
data
structure

PCB

TCB

PCB
Single-threading

OS kernel

Multi-threading
OS kernel

thread lib

46

User-level Threading

Benefits:
 Faster context switch (no need to cross into kernel)
 Thread scheduling is more flexible

尌 Can use application-specific scheduling policy
尌 Each process can use a different scheduling algorithm
尌 Threads voluntarily give up CPU

Drawbacks:
 OS is unaware of the existence of user-level threads

尌 Poor scheduling decisions
尌 If a user-level thread waits for I/O – entire process waits

 OS schedules processes independent of number of threads within a
process

47

User-level Threading vs Kernel Threading

User-level threading
 OS does not know about user-level threads
 OS is only aware of the process that contains threads
 OS schedules processes, not threads
 Programmer uses a threads library to manage threads (create,

delete, synchronize and schedule)

Kernel threading
 OS knows and tracks kernel threads
 Switching threads within same process is inexpensive
 Kernel uses process scheduling algorithms to manage threads

48

Scheduler Activations (best of both worlds)

Why not a user level thread scheduler that spawns a kernel
thread for blocking operations?
 But how do we know if an operation will block?
 read() might block, or data might be in page cache.
 Any memory reference might cause a page fault to disk.

Solution : Scheduler Activations
 Kernel tells user when a thread is going to block, via an upcall.
 Kernel can provide a kernel thread to run the user-level upcall

handler (or preempt user thread).
 User-level scheduler suspends blocking thread and can give back

kernel thread it was running on.

49

Thread Pools

Control multiprogramming level
 Maintain a bounded “pool” of worker threads (controlling the

maximum number of threads)

Web server example
Master:

loop {
wait until an incoming connection
equeue(q, new_connection);
wakeup(q);

}

Worker:
loop {

waiton(q);
new_connection = dequeue(q);
service new_connection;

}

50

Thread or Process Pool

Creating a thread or
process for each unit of
work (e.g., user request) is
dangerous
 High overhead to create &

delete thread/process
 Can exhaust CPU &

memory resource

Thread/process pool
controls resource use
 Allows service to be well

conditioned.

Load

Th
ro

ug
hp

ut

Well conditioned
Not well conditioned

51

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

52

Context Switch

Stop current running process (move from Running
to another state) and schedule another process (put
to Running state)

Π Must save various portions of the process context
before switching.

Π Must be able to restore them later so that the process
cannot tell that it was ever suspended.

Π Must be fast (context switches are very frequent)
What context needs to be saved?

Π Registers (PC, SP, …), CPU states, …
Π Sometimes can be time-consuming and we should

avoid if possible

53

Context Switch Illustration

54

Keeping Track of Processes

OS has PCBs for active processes.
OS puts PCB on an appropriate queue.

Π Ready to run queue.
Π Waiting for I/O queue (Queue per device).
Π Zombie queue.

55

Outline

• What is a Process?
• Process Control Block
• Process Life Cycle
• The Concept of Thread
• Example Multithreaded Programs
• Thread Implementations
• Context Switch
• Process Control

• fork()
• exec()
• wait()
• exit()

56

How Do Programmers Use Processes?

How to build a fast, multi-process web server
Π Main process waits for a network connection
Π Main process accepts connection. OS represents open connection

with a FILE DESCRIPTOR
Π Main process starts a new process for this connection
Π Main process must pass new process the file descriptor for the

open connection

Simple CreateProcess system call is insufficient
Π Process is program + process state
Π Process state can be as little as initial stack contents, or anything in

the PCB (open files, network connections, security credentials)

57

The Genius of Separating Fork/Exec

Life with CreateProcess(filename);
Π But I want to close all file descriptors in the child.
CreateProcess(filename, CLOSE_FD);

Π And I want to change the child’s environment.
CreateProcess(filename, CLOSE_FD, new_envp);

Π Etc.
fork() = split this process into 2 (new PID)
exec() = overlay this process with new program

(PID does not change)

58

The Genius of Separating Fork/Exec

Decoupling fork and exec lets you do anything to the
child’s process environment without adding it to the
CreateProcess API.
int pid = fork(); // create a child
if(pid == 0) { // child continues here
 // Do anything (unmap memory, close net connections…)

exec(“program”, argc, argv0, argv1, …);
}
fork() creates a child process that inherits:

Π identical copy of all parent’s variables & memory
Π identical copy of all parent’s CPU registers (except one)

Parent and child execute at the same point after fork() returns:
Π for the child, fork() returns 0
Π for the parent, fork() returns the process identifier of the child
Π fork() return code a convenience, could always use getpid()

59

main {
 int childPID;
 S1;

 childPID = fork();

 if(childPID == 0)
 <code for child process>
 else {
 <code for parent process>
 wait();
 }

 S2;
 }

Unix fork() example

The execution context for the child process is a copy of the parent’s
context at the time of the call

Π fork() returns child PID in parent, and 0 in child

CodeCode

DataData

StackStack

CodeCode

DataData

StackStack

Parent Child

fork()

childPID
= 0

childPID
= 0

childPID
= xxx

childPID
= xxx

60

General Purpose Process Creation

In the parent process:
main()
…
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);
 printf(“Why would I execute?”);
}
else { // parent continues here
 printf(“Whose your daddy?”);
 …
 child_status = wait(pid);
}

61

C Program Forking Separate Process

int main()
{
Pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

62

pid = 127
open files = “/bin/sh”
last_cpu = 0

pid = 128
open files = “/bin/sh”
last_cpu = 0

A shell forks and then execs a calculator

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

pid = 128
open files = “/bin/calc”
last_cpu = 0

Process Control
Blocks (PCBs)

OS

USER

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

int calc_main(){
 int q = 7;
 do_init();
 ln = get_input();
 exec_in(ln);

63

pid = 127
open files = “/bin/sh”
last_cpu = 0

pid = 128
open files = “/bin/sh”
last_cpu = 0

A shell forks and then execs a calculator

int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA
int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA
int calc_main() {
 int q = 7;
 … Code

Heap

Stack

0x43178050

pid = 128
open files = “/bin/calc”
last_cpu = 0

Process Control
Blocks (PCBs)

OS

USER

64

Program Loading: exec()

The exec() call allows a process to “load” a different
program and start execution at main (actually _start).

It allows a process to specify the number of arguments
(argc) and the string argument array (argv).

If the call is successful
Π it is the same process …
Π but it runs a different program !!

Code, stack & heap is overwritten
Π Sometimes memory mapped files are preserved.

65

At what cost, fork()?

Simple implementation of fork():
Π allocate memory for the child process
Π copy parent’s memory and CPU registers to child’s
Π Expensive !!

In 99% of the time, we call exec() after calling fork()
Π the memory copying during fork() operation is useless
Π the child process will likely close the open files & connections
Π overhead is therefore high
Π Why not combine them in one call (OS/2, Windows)?

vfork()
Π a system call that creates a process “without” creating an identical

memory image
Π sometimes called lightweight fork()
Π child process should call exec() almost immediately
Π No use now if we use Copy on Write (COW) technology

66

The wait() System Call

A child program returns a value to the parent, so the parent must
arrange to receive that value

The wait() system call serves this purpose
Π it puts the parent to sleep waiting for a child’s result
Π when a child calls exit(), the OS unblocks the parent and returns the value

passed by exit() as a result of the wait call (along with the pid of the child)
Π if there are no children alive, wait() returns immediately
Π also, if there are zombies waiting for their parents, wait() returns one of

the values immediately (and deallocates the zombie)

67

Orderly Termination: exit()

After the program finishes execution, it calls exit()
This system call:

Π takes the “result” of the program as an argument
Π closes all open files, connections, etc.
Π deallocates memory
Π deallocates most of the OS structures supporting the process
Π checks if parent is alive:

 If so, it holds the result value until parent requests it; in this case, process does
not really die, but it enters the zombie/defunct state

 If not, it deallocates all data structures, the process is dead
Π cleans up all waiting zombies

Process termination is the ultimate garbage collection (resource
reclamation).

68

Process Control

OS must include calls to enable special control of a process:

Priority manipulation:
Π nice(), which specifies base process priority (initial priority)
Π In UNIX, process priority decays as the process consumes CPU

Debugging support:
Π ptrace(), allows a process to be put under control of another process
Π The other process can set breakpoints, examine registers, etc.

Alarms and time:
Π Sleep puts a process on a timer queue waiting for some number of

seconds, supporting an alarm functionality

69

Tying it All Together: The Unix Shell

while(! EOF) {
read input
handle regular expressions
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

 Translates <CTRL-C> to the kill() system call with SIGKILL

 Translates <CTRL-Z> to the kill() system call with SIGSTOP

 Allows input-output redirections, pipes, and a lot of other stuff that we will see
later

