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Recap for last week

The concurrency problem: race condition
Π Big problem in concurrent multi-programming

Synchronization
Π Coordinating execution of multiple threads that share common data
Π Include mutual exclusion and conditional synchronization
Π Mutual exclusion: only one thread can execute a critical section at 

a time

Too difficult to get synchronization right?
Π Need high-level programming abstractions (e.g., Lock)
Π Build them from low-level hardware supports
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Another High-Level Abstraction: Semaphore

Abstract data type
Π A integer (sem), with two atomic operations
Π P(): decreases sem by 1, if sem<0, then waits, otherwise continues  
Π V(): increases sem by 1, if sem<=0,then wakes up a waiting P if 

any

Semaphore from railway analogy
Π Here is a semaphore initialized to 2 for resource control:
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Historical Perspective for Semaphores

Introduced by Dijkstra in 1960s
Π V: Verhoog (Dutch for increase)
Π P: Prolaag (Dutch short for “Probeer te Verlagen”, or try to 

decrease)

Main synchronization primitives in early OSes
Π For example, original Unix
Π Much less used now (but still very important in computer science 

study)
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Some Important Properties of Semaphores

Semaphores are integers
Semaphores are protected variables

Π After initialization, only way you can change the value of a 
semaphore is through P() and V()

Π Operations must be atomic

P() can block, V() never blocks
We assume a semaphore is “fair”

Π No thread that is blocked on P() remains blocked if V() is invoked 
infinitely often (on the same semaphore)

Π In practice, FIFO is mostly used

Spinlock  can be in FIFO style?
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More about Semaphores

Two types of semaphores
Π Binary semaphores: can either be 0 or 1
Π General/Counting semaphores: can take any non-negative value
Π Both are as expressive (given one can implement the other)

Semaphores can be used both for
Π Mutual exclusion
Π Conditional synchronization (scheduling constraints – one thread 

waiting for something to happen in another thread)
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Using Semaphores for Mutual Exclusion

Use a binary semaphore for mutual exclusion

mutex = new Semaphore(1);mutex = new Semaphore(1);

mutex->P();
     …
Critical Section;
     …
mutex->V();

mutex->P();
     …
Critical Section;
     …
mutex->V();



12

Semaphores for Conditional Synchronization

Use a binary semaphore for scheduling constraints

P() is to wait, V() is to signal

condition = new Semaphore(0);condition = new Semaphore(0);

…
condition->P();
     …

…
condition->P();
     … …

condition->V();
     …

…
condition->V();
     …

Thread A Thread B
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Conditional Synchronization

One thread waits for some other thread to do something
Π Like produced something, or consumed something, …
Π Mutual exclusion (locking) is not sufficient

Example: the bounded buffer producer-consumer problem
Π One or more producers are generating data and placing these in a 

buffer
Π A single consumer is taking items out of the buffer one at time
Π Only one producer or consumer may access the buffer at any one 

time

Producer ConsumerBuffer
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Semaphores in Producer-Consumer Problem

Correctness requirements
Π Only one thread manipulates the buffer at any time (mutual 

exclusion)
Π Consumer must wait for producer when buffer is empty 

(scheduling/synchronization constraint)
Π Producer must wait for the consumer when buffer is full 

(scheduling/synchronization constraint)

Use a separate semaphore for each constraint
Π Binary semaphore mutex
Π General semaphore fullBuffers
Π General semaphore emptyBuffers
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Producer-Consumer Problem using Semaphore

Does the order of P and V matter?

Class BoundedBuffer {
    mutex = new Semaphore(1);
    fullBuffers = new Semaphore(0);
    emptyBuffers = new Semaphore(n);
}

Class BoundedBuffer {
    mutex = new Semaphore(1);
    fullBuffers = new Semaphore(0);
    emptyBuffers = new Semaphore(n);
}

BoundedBuffer::Deposit(c) {
    emptyBuffers->P(); 
    mutex->P(); 
    Add c to the buffer;
    mutex->V();
    fullBuffers->V();
}

BoundedBuffer::Deposit(c) {
    emptyBuffers->P(); 
    mutex->P(); 
    Add c to the buffer;
    mutex->V();
    fullBuffers->V();
}

BoundedBuffer::Remove(c) {
    fullBuffers->P();
    mutex->P();
    Remove c from buffer;
    mutex->V();
    emptyBuffers->V();
}

BoundedBuffer::Remove(c) {
    fullBuffers->P();
    mutex->P();
    Remove c from buffer;
    mutex->V();
    emptyBuffers->V();
}
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Implementing Semaphore

Using hardware primitives
Π Disabling interrupts
Π Atomic instruction (test-and-set)

Similar to locks
Example: using disabling interrupts

Semaphore::P() {
    sem--;
   if (sem < 0) {
        Add this TCB to q;
        block(p);
    }
}

Semaphore::P() {
    sem--;
   if (sem < 0) {
        Add this TCB to q;
        block(p);
    }
}

Semaphore::V() {
    sem++; 
    if (sem<=0) {
        Remove a thread t from q;
        wakeup(t);        
    }
}

Semaphore::V() {
    sem++; 
    if (sem<=0) {
        Remove a thread t from q;
        wakeup(t);        
    }
}

classSemaphore {
int sem;
WaitQueue q;
}

classSemaphore {
int sem;
WaitQueue q;
}
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P primitive: sem_wait 

int down_interruptible(struct semaphore *sem)
Π http://lxr.linux.no/linux+v3.3.6/kernel/semaphore.c#L75

int down_killable(struct semaphore *sem)
Π http://lxr.linux.no/linux+v3.3.6/kernel/semaphore.c#L101

static inline int __sched __down_common(struct semaphore *sem, long state, 
long timeout)

Π http://lxr.linux.no/linux+v3.3.6/kernel/semaphore.c#L204

sem_wait (semaphore *S) {// Must be executed atomically
S->value--;
if (S->value < 0) {

add this process to S->tlist;
block();

}
}

sem_wait (semaphore *S) {// Must be executed atomically
S->value--;
if (S->value < 0) {

add this process to S->tlist;
block();

}
}



19

V primitive: sem_wait

sem_signal (semaphore *S) {// Must be executed atomically
S->value++;
if (S->value <= 0) {

remove thread t from S->tlist;
wakeup(t);

}
}

sem_signal (semaphore *S) {// Must be executed atomically
S->value++;
if (S->value <= 0) {

remove thread t from S->tlist;
wakeup(t);

}
}

void up(struct semaphore *sem)
Π http://lxr.linux.no/linux+v3.3.6/kernel/semaphore.c#L178

static noinline void __sched __up(struct semaphore *sem)
Π http://lxr.linux.no/linux+v3.3.6/kernel/semaphore.c#L256

int wake_up_process(struct task_struct *p)
Π http://lxr.linux.no/linux+v3.2/kernel/sched.c#L2929

static int try_to_wake_up(struct task_struct *p, unsigned int state, int 
wake_flags)

Π http://lxr.linux.no/linux+v3.2/kernel/sched.c#L2821
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The Problem with Semaphores

Semaphores are used for dual purpose
Π Mutual exclusion and conditional synchronization
Π But waiting for condition is independent of mutual exclusion

Difficult to read/develop code
Π Programmer needs to be clever about using semaphores

Easy mistakes
Π Take a semaphore that is already held in same thread
Π Forget to release a semaphore

Inadequate in dealing with deadlocks
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Introducing Monitor

Purpose: separate the concerns of mutual exclusion and 
conditional synchronization
What is a monitor?

Π One Lock: specify critical section
Π zero or more Condition variables: wait/signal inside critical section for 

managing concurrent access to shared data

General Approach
Π Collect related shared data into an object/module
Π Define methods for accessing the shared data
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Monitor with Condition Variables
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Locks and Condition Variables

Lock
Π Lock::Acquire() – wait until lock is free, then grab it
Π Lock::Release() – release the lock, wake up a waiter if any

Condition Variable
Π Enable waiting inside a critical section

鐚 Allow threads to wait (sleep) inside a critical section
鐚 Does so by atomically releasing lock at time to go to sleep

Π Wait() operation
鐚 Release lock, go to sleep (block), re-acquire lock upon return

Π Signal() operation (or broadcast() operation)
鐚 Wake up a waiter (or all waiters), if any
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Implementing Conditional Variables

Implementation
Π Requires a per-condition variable queue to be maintained
Π Threads waiting for the condition wait for a signal()

Condition::Wait(lock){
    numWaiting++;
    Add this TCB to q;
    lock->release();
    schedule();
    lock->acquire();
}

Condition::Wait(lock){
    numWaiting++;
    Add this TCB to q;
    lock->release();
    schedule();
    lock->acquire();
}

Condition::Signal(){
    if (numWaiting > 0) {
        Remove a thread t from q;
        wakeup(t);
        numWaiting--;
    }
}

Condition::Signal(){
    if (numWaiting > 0) {
        Remove a thread t from q;
        wakeup(t);
        numWaiting--;
    }
}

Class Condition {
    int numWaiting = 0;
    WaitQueue q;
}

Class Condition {
    int numWaiting = 0;
    WaitQueue q;
}
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Example Monitor: Producer-Consumer Problem

BoundedBuffer::Deposit(c) {
    lock->Acquire();
    while (count == n)
        notFull.Wait(&lock);
    Add c to the buffer;
    count++;
    notEmpty.Signal();
    lock->Release();
}

BoundedBuffer::Deposit(c) {
    lock->Acquire();
    while (count == n)
        notFull.Wait(&lock);
    Add c to the buffer;
    count++;
    notEmpty.Signal();
    lock->Release();
}

BoundedBuffer::Remove(c) {
    lock->Acquire();
    while (count == 0)
        notEmpty.Wait(&lock);
    Remove c from buffer;
    count--;
    notFull.Signal();
    lock->Release();
}

BoundedBuffer::Remove(c) {
    lock->Acquire();
    while (count == 0)
        notEmpty.Wait(&lock);
    Remove c from buffer;
    count--;
    notFull.Signal();
    lock->Release();
}

classBoundedBuffer {
    …
    Lock lock;
    int count = 0;
    Condition notFull, notEmpty;
}

classBoundedBuffer {
    …
    Lock lock;
    int count = 0;
    Condition notFull, notEmpty;
}
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Monitor: Two Styles

Hansen-style (most real OSes, 
or Java, Mesa)

Hoare-style (most textbooks)

l.acquire()
…
x.wait()

l.acquire()
…
x.wait()

l.acquire()
…
x.signal()
…
l.release()

l.acquire()
…
x.signal()
…
l.release()

…
l.release()

…
l.release()

T1 blocks

T2 starts

T1 resumes

T2 finishes

l.acquire()
…
x.wait()

l.acquire()
…
x.wait()

l.acquire()
…
x.signal()

l.acquire()
…
x.signal()

…
l.release()

…
l.release()

…
l.release()

…
l.release()

T1 blocks

T2 starts

T1 resumes

T2 blocks

T1 finishes

T2 resumes
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Hansen Monitors versus Hoare Monitors
Hansen-style

Π Signal is only a “hint” that the 
condition may be true

Π Need to check again
Benefits

Π Efficient implementation

Hoare-style
Π Cleaner, good for proofs
Π When a condition variable is 

signaled, it does not change
But

Π Inefficient implementation

Hoare-style: Deposit(){
lock!acquire();
if (count == n) {
notFull.wait(&lock); }
Add thing;
count++;
notEmpty.signal();
lock!release();
}

Hansen-style :Deposit(){
lock!acquire();
while (count == n) {
notFull.wait(&lock); }
Add  thing;
count++;
notEmpty.signal();
lock!release();
}
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Synchronization Summary

Hardware
support

Lock

Busy waiting
(spinlock)

Blocking
(using WaitQueue)

High-level
abstractions

Concurrent
Programming

Critical Section

Condition Variables

Monitor

Disabling
Interrupts

Atomic Instructions
(e.g., test-and-set)

Atomic
Load/Store
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Concurrent Programming Summary

Developing/debugging concurrent programs is hard
Π Non-deterministic interleaving of instructions

Synchronization constructs
Π Locks: mutual exclusion
Π Condition variables: conditional synchronization
Π Other primitives: semaphores

How can you use these constructs effectively?
Π Develop and follow strict programming style/strategy
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Classical Synchronization Problems

The bounded buffer producer-consumer problem
The readers-writers problem
The dining philosophers problem
The sleeping barber problem
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Readers/Writers: A Complete Example

Motivation
Π Shared databases accesses

Two types of users
Π Readers: Never modify data
Π Writers: read and modify data

Problem constraints
Π Allow multiple readers at the same time, but only one writer at any 

time
Π Readers can access data when there are no writers
Π Writers can access data when there are no readers/writers
Π Only one thread can manipulate shared variables at any time
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Readers/Writers: Using Semaphore

A data set is shared among a number of 
concurrent processes

Π Readers – only read the data set; they do not 
perform any updates

Π Writers   – can both read and write.

Shared Data
Π Data set
Π Semaphore CountMutex initialized to 1.
Π Semaphore WriteMutex initialized to 1.
Π Integer Rcount initialized to 0.
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Readers/Writers: Using Semaphore (Cont.)

sem_wait(WriteMutex);

   write;

sem_post(WriteMutex);

sem_wait(WriteMutex);

   write;

sem_post(WriteMutex);

sem_wait(CountMutex);
  if (Rcount == 0)
     sem_wait (WriteMutex);
  ++Rcount;
sem_post(CountMutex);

read;

sem_wait(CountMutex);
  --Rcount;
  if (Rcount == 0)
    sem_post (WriteMutex);
sem_post(CountMutex)

sem_wait(CountMutex);
  if (Rcount == 0)
     sem_wait (WriteMutex);
  ++Rcount;
sem_post(CountMutex);

read;

sem_wait(CountMutex);
  --Rcount;
  if (Rcount == 0)
    sem_post (WriteMutex);
sem_post(CountMutex)

Writer Reader



36

Readers/Writers Problem: Writer Have Priority
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Readers/Writer: Using Monitors

Basic structure: two 
methods

State variables

Database::Write() {
       Wait until no readers/writers;
       Access database;
       check out – wake up waiting readers/writers; 
}

Database::Write() {
       Wait until no readers/writers;
       Access database;
       check out – wake up waiting readers/writers; 
}

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

Database::Read() {
       Wait until no writers;
       Access database;
       check out – wake up waiting writers; 
}

Database::Read() {
       Wait until no writers;
       Access database;
       check out – wake up waiting writers; 
}
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Solution Details: Readers

Public Database::Read() {
       StartRead();
       Access database;
       DoneRead(); 
}

Public Database::Read() {
       StartRead();
       Access database;
       DoneRead(); 
}

Private Database::StartRead() {
       lock.Acquire();
       while ((AW+WW) > 0) {

WR++;
okToRead.wait(&lock);
WR--;

       }
      AR++;
      lock.Release();
}

Private Database::StartRead() {
       lock.Acquire();
       while ((AW+WW) > 0) {

WR++;
okToRead.wait(&lock);
WR--;

       }
      AR++;
      lock.Release();
}

Private Database::DoneRead() {
lock.Acquire();
       AR--;
       if (AR ==0 && WW > 0) {
            okToWrite.signal();
       }
lock.Release();
}

Private Database::DoneRead() {
lock.Acquire();
       AR--;
       if (AR ==0 && WW > 0) {
            okToWrite.signal();
       }
lock.Release();
}

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;
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Solution Details: Writers

Public Database::Write() {
       StartWrite();
       Access database;
       DoneWrite(); 
}

Public Database::Write() {
       StartWrite();
       Access database;
       DoneWrite(); 
}

Private Database::StartWrite() {
lock.Acquire();
       while ((AW+AR) > 0) {

WW++;
            okToWrite.wait(&lock);

WW--;
       }
      AW++;
lock.Release();
}

Private Database::StartWrite() {
lock.Acquire();
       while ((AW+AR) > 0) {

WW++;
            okToWrite.wait(&lock);

WW--;
       }
      AW++;
lock.Release();
}

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

AR = 0;  // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

Private Database::DoneWrite() {
lock.Acquire();
       AW--;
       if (WW > 0) {
           okToWrite.signal();
       }
       else if (WR > 0) {
           okToRead.broadcast();
       }
lock.Release();
}

Private Database::DoneWrite() {
lock.Acquire();
       AW--;
       if (WW > 0) {
           okToWrite.signal();
       }
       else if (WR > 0) {
           okToRead.broadcast();
       }
lock.Release();
}
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Dining-Philosophers Problem

Shared data 
Π Bowl of rice (data set)
Π Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem (Cont.)

The structure of Philosopher i:

Do  { 
      wait ( chopstick[i] );

 wait ( chopStick[ (i + 1) % 5] );

       //  eat

 signal ( chopstick[i] );
 signal (chopstick[ (i + 1) % 5] );

           //  think

} while (true) ;
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Solution to Dining Philosophers

void test (int i) { 
        if ( (state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING) ) { 
             state[i] = EATING ;

       self[i].signal () ;
         }
 }

       initialization_code() { 
       for (int i = 0; i < 5; i++)
       state[i] = THINKING;

}
}
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Solution to Dining Philosophers (cont)

monitor DP
   { 

enum { THINKING; HUNGRY, EATING} state [5] ;
condition self [5];

void pickup (int i) { 
       state[i] = HUNGRY;
       test(i);
       if (state[i] != EATING) self [i].wait;
}

       void putdown (int i) { 
       state[i] = THINKING;

                   // test left and right neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);

        }
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Sleeping Barber Problem

There is one barber, and n chairs for 
waiting customers
If there are no customers, then the 
barber sits in his chair and sleeps
When a new customer arrives and 
the barber is sleeping, then he will 
wakeup the barber
When a new customer arrives, and 
the barber is busy, then he will sit 
on the chairs if there is any 
available, otherwise (when all the 
chairs are full) he will leave.
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Barber Shop Hints

Consider the following:
Customer threads should invoke a function named 
getHairCut.
If a customer thread arrives when the shop is full, it can 
invoke balk, which exits.
Barber threads should invoke cutHair.
When the barber invokes cutHair there should be exactly 
one thread invoking getHairCut concurrently.
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Sleeping Barber Solution

void customer (void){
down(mutex); 

if (customers==n+1) {
up(mutex);
balk(); 
}

customers +=1; 
up(mutex); 

up(customer); 
down(barber); 
getHairCut(); 

down(mutex); 
customers -=1; 

up(mutex);
}

void barber (void){
down(customer);
up(barber); 
cutHair(); 

}

int customers = 0;  
mutex = Semaphore(1); 
customer = Semaphore(0); 
barber = Semaphore(0);


