
1

Operating Systems

 IIIS
 Department of Computer Science & Technology
 Tsinghua University

 Lecture 10: Synchronization

2

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

3

Multi-programming

So far in this course
Ø Multi-programming: an important feature of modern OS
Ø Parallelism is good (why?)

 Hint: multiple concurrent entities: CPU(s), I/O, …, users, …
Ø Process/thread: OS abstractions to support multi-programming
Ø CPU schedule: mechanism to realize multi-programming
Ø Scheduling algorithms – different policies

This and next week
Ø Collaborative multi-programming and the concurrency problem

4

Correctness with concurrent threads

Independent threads:
Ø No state shared with other threads
Ø Deterministic Input state determines results
Ø Reproducible Can recreate Starting Conditions, I/O
Ø Scheduling order doesn’t matter

Cooperating threads:
Ø Shared state between multiple threads
Ø Non-deterministic
Ø Non-reproducible

Non-deterministic and Non-reproducible means that bugs
can be intermittent
Ø Sometimes called “Heisenbugs”

5

Why allow cooperating threads?

People cooperate, so computers/devices must cooperate
Advantage 1: Share resources
Ø One computer, many users
Ø One bank balance, many ATMs
Ø Embedded systems (robot control: coordinate arm & hand)

Advantage 2: Speedup
Ø Overlap I/O and computation
Ø Multiprocessors – chop up program into parallel pieces

Advantage 3: Modularity
Ø Chop large problem up into simpler pieces

 To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
Ø Makes system easier to extend

6

Example: Creating a New Process ID

A program calls fork() to create a new process
Ø OS needs to assign a new and unique process ID
Ø So somewhere in the kernel, this system call will do

 new_pid = next_pid++ ;
Ø Translating into machine instructions

 LOAD next_pid Reg1
 STORE Reg1 new_pid
 INC Reg1
 STORE Reg1 next_pid

Assume two processes execute concurrently
Ø If next_pid is 100, then one process should get 100, the other

should get 101, and next_pid should increase to 102

7

Work correctly under all possible interleaving?

Process 1

LOAD next_pid Reg1
STORE Reg1 new_pid

INC Reg1
STORE Reg1 next_pid

Gets 100 as the new PID
Ø next_pid becomes 101

Process 2

LOAD next_pid Reg1
STORE Reg1 new_pid
INC Reg1
STORE Reg1 next_pid

Gets 100 as the new PID
Ø next_pid becomes 101

8

Concurrency: Correctness Requirements

Threaded programs must work for all interleavings of
thread instruction sequences
Ø Cooperating threads inherently non-deterministic and non-

reproducible
Ø Really hard to debug unless carefully designed!

Need to be careful about correctness of concurrent
programs, since non-deterministic
Ø Always write down behavior first
Ø Impulse is to start coding first, then when it doesn’t work, pull hair

out
Ø Instead, think first, then code

9

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

10

Concept: Race Condition

A flaw in the system where the outcome depends on the
sequence/timing of concurrent executions or events
Ø Like the previous example
Ø Non-deterministic
Ø Non-reproducible

How do you avoid such race condition in an OS design?

11

Concept: Atomic Operation

An atomic operation is one that executes to completion
without any interruption or failure
Ø Either it executes to completion, or
Ø it did not execute at all, and
Ø no one else should see a partially-executed state

Operations are often not atomic
Ø Many that we thought to be are not so by the computer
Ø Not even a simple statement like “x++” !

 Translated into a sequence of 3 instructions
Ø Sometimes not even so for a machine instruction

 Remember pipeline, super-scalar, out-of-order, page fault?

12

Another Concurrent Program Example

Two threads, A and B, compete with each other
Ø One tries to increment a shared counter
Ø The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)
 i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

Ø Assume that memory loads and stores are atomic, but incrementing
and decrementing are not atomic

Who wins?
Is it guaranteed that someone wins?
What it both threads have their own CPU running at same
speed?

13

Concepts

Critical section
Ø A section of code within a process that requires access to shared resources

and which may not be executed while another process is in a
corresponding section of code.

Mutual exclusion
Ø The requirement that when one process is in a critical section that accesses

shared resources, no other process may be in a critical section that
accesses any of those shared resources.

Deadlock
Ø A situation in which two or more processes are unable to proceed because

each is waiting for one of the others to do something.

Starvation
Ø A situation in which a runnable process is overlooked indefinitely by the

scheduler; although it is able to proceed, it is never chosen.

14

Motivation Example: “Too much milk”

Great thing about OS’s – analogy between problems in OS
and problems in real life
Ø Help you understand real life problems better
Ø But, computers are much stupider than people

Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk

away
3:20

Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

15

Too Much Milk: Correctness Properties

What are the correctness properties for the “Too much
milk” problem?
Ø Never more than one person buys
Ø Someone buys if needed

Synchronization: finding a solution to this problem
Ø Assume only LOAD and STORE are atomic
Ø Important: all synchronization involves “waiting”

For example, putting a key on the refrigerator
Ø Lock it and take key if you are going to go buy milk
Ø Fixes too much: what if someone only wants juice?
Ø Of Course – how do we make this “lock” thing?

16

Too Much Milk: Solution #1

Use a note to avoid buying too much milk:
Ø Leave a note before buying (kind of “lock”)
Ø Remove note after buying (kind of “unlock”)
Ø Don’t buy if there is a note (i.e., wait until note is gone)

Example program:
if (noMilk) {

 if (noNote) {
 leave Note;
 buy milk;
 remove Note;
 }

}

Does it work?

17

Solution #1

Result
Ø Still too much milk although only occasionally!
Ø Thread can get context switched after checking milk and note but

before buying milk!

Solution makes problem worse since fails intermittently
Ø Makes it really hard to debug…
Ø Must work despite what the dispatcher does!

18

Too Much Milk: Solution #1½

Clearly the Note is not quite blocking enough
Let’s try a quick fix: just place note first

leave Note;
if (noMilk) {

 if (noNote) {
 buy milk;
 }

}
remove note;

What happens here?
Ø No one ever buys milk

19

Too Much Milk Solution #2

How about labeled notes?
Ø Now we can leave note before checking

Algorithm looks like this:
Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
} }
remove note A; remove note B;

Does this work?

20

Solution #2

Possible for neither thread to buy milk
Ø Context switches at exactly the wrong times can lead each to think

that the other is going to buy

Really insidious:
Ø Extremely unlikely that this would happen, but will at worse

possible time
Ø Probably something like this in UNIX

This kind of lockup is called “starvation!”

21

Too Much Milk Solution #3

A more complicated two-note solution:
Thread A Thread B
leave note A; leave note B;
while (note B) { if (noNote A) {

 do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

 buy milk; }
} remove note B;
remove note A;

Does this work now?
Ø Yes. Either safe to buy, or other will buy so ok to quit

But are you happy with the solution?

if no note B, safe
for A to buy,
otherwise wait
for B to quit first

if no note A,
safe for B to buy,
otherwise A is
either buying or
waiting for B to
quit

22

Solution #3 discussion

It works, but it’s really unsatisfactory
Really complex – even for this simple an example
Ø Hard to convince yourself that this really works

A’s code is different from B’s
Ø Code would have to be slightly different for each thread
Ø What if lots of threads?

While A is waiting, it is consuming CPU time
Ø This is so called “busy-waiting”

Is there a better way?

23

Goal is to Protect a Critical Piece of Code

Solution #3 protects a single “critical-section” piece of
code for each thread:

if (noMilk) {
 buy milk;

}

A better way than solution #3
Ø Have hardware provide better (higher-level) primitives than atomic

LOAD and STORE
Ø Build higher-level programming abstractions on this new hardware

support

24

Too Much Milk: Solution #4

Suppose we have some implementation of a lock
Ø Lock.Acquire() – wait until lock is free, then grab
Ø Lock.Release() – Unlock, waking up anyone waiting
Ø These must be atomic operations – if two threads are waiting for

the lock and both see it’s free, only one succeeds to grab the lock

Then our milk problem is easy:
milklock.Acquire();
if (nomilk) {
 buy milk;

 }
milklock.Release();

25

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

26

Where are we going with Synchronization?

We are going to implement various higher-level
synchronization primitives using atomic operations
Ø Everything is pretty painful if only atomic primitives are load and

store
Ø Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

OS
Abstractions

Programs

27

Restricted Access to Critical Data/Resources

Only through a piece of code segment
Ø “Lock” before enter
Ø Wait if already “locked”
Ø Here comes the “critical section”
Ø “Unlock” when done

Important properties for this code segment
Ø Can only be executed by one process/thread at a time
Ø Must not be aborted (i.e., must eventually finish)

Cooperative concurrent programs
Ø Access data only through this code segment

28

Example Code Segment for Accessing next_pid

Somewhere in the kernel, when serving fork() system call

…
ENTER_CRITICAL_SECTION
…
new_pid = next_pid++ ;
…
EXIT_CRITICAL_SECTION
…

Critical section

Code for entering
and leaving the
critical section

29

Critical Section

An important concept in concurrent programming
Ø A segment of important code involved in reading and writing a

shared data area
Ø Must be executed only by one process/thread at a time

Key assumptions:
Ø Finite Progress Axiom: Processes execute at a finite, but otherwise

unknown, speed.
Ø Processes cannot halt (by failing, or just terminating) inside critical

section

Used profusely in OS to protect data structures
Ø Examples: queues, shared variables, lists, …

30

Critical Section Property

Mutual exclusion: At most k threads are concurrently in
the critical section (very often k is 1)

Progress: A thread that wants to enter the critical section,
will eventually succeed

Bounded waiting: If a thread i is in entry section, then
there is a bound on the number of times that other threads are
allowed to enter the critical section before thread i’ s request
is granted

No busy waiting (optional): If a process is waiting for
entering its critical section, it is suspended until it is permitted
to enter.

31

Mechanisms for Implementing Critical Section

Code for entering and leaving critical section
Ø ENTER_CRITICAL_SECTION
Ø EXIT_CRITICAL_SECTION

Basic mechanisms
Ø Disabling interrupt
Ø Software solution (e.g., Peterson’s algorithm)
Ø Higher-level abstractions

Comparing different mechanisms
Ø Performance: concurrency level

32

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

33

Approach 1: Disabling Hardware Interrupt

No interrupt, no context switch, hence no concurrency
Ø Hardware delays the interrupt processing until interrupts are

enabled again
Ø Most modern computer architecture provides instructions to do this

Entering critical section
Ø Disable interrupts

Exiting critical section
Ø Enable interrupts

34

Disadvantage

Once interrupts are disable, the thread can’t be stopped
Ø Whole system put to a stop for you
Ø Can starve other threads

What if the critical section is arbitrarily long?
Ø Can’t bound the amount of time needed to respond to interrupt

(may have hardware implications)

Must be used carefully!

35

Example: Disabling Interrupts in Linux

Usually some small number of interrupt levels, statically
assigned (e.g., reset = 0, timer = 1, network = 3, disk = 4,
software = 7)
Ø When you “disable interrupts” you disable them for your level and

higher.
Ø When you reenable interrupts, you need to do so at the previous

level.

unsigned long flags;
local_irq_save(flags); // Disable & save
CRITICAL SECTION GOES HERE;
local_irq_restore(flags); // Reenable

36

Question

What is wrong with this code?

unsigned long flags;
local_irq_save(flags); // Disable & save
 …
 if(somethingBad) {
 return ERROR_BAD_THING;
 }
 …
local_irq_restore(flags); // Reenable
return 0;

37

Using Interrupt Correctly

Make sure to re-enable interrupts along every possible
execution path.

unsigned long flags;
local_irq_save(flags); // Disable & save
 …
 if(somethingBad) {
 local_irq_restore(flags);
 return ERROR_BAD_THING;
 }
 …
local_irq_restore(flags); // Reenable
return 0;

How about in SMP/CMP machine?

38

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

39

Approach 2: Peterson’s Algorithm
Initial Attempts to Solve Problem

Only 2 threads, T0 and T1
General structure of thread Ti (other thread Tj)‏

do {
enter section

critical section
exit section

reminder section
} while (1);

Threads may share some common variables to synchronize
their actions.

40

Approach 2: Peterson’s Algorithm
First Attempt: Algorithm 1

Shared variables - initialization
Ø int turn = 0;

turn == i // indicates whose turn it is to enter the critical section
Thread Ti

do {
while (turn != i) ;
critical section
turn = j;
reminder section

} while (1);
Satisfies mutual exclusion, but not progress some time

Ø (Ti do other thing, Tj want to continue to run, but have to wait Ti do
critical section)

41

Approach 2: Peterson’s Algorithm
Second Attempt: Algorithm 2

Shared variables - initialization
Ø int flag[2]; flag[0] = flag[1] = 0;

flag[i] == 1 //indicate if process is ready to enter the
critical section
Thread Ti
do {
while (flag[j] == 1) ;

 flag[i] = 1;
critical section
flag[i] = 0;
remainder section

} while(1);
no mutual exclusion

42

Approach 2: Peterson’s Algorithm
Third Attempt: Algorithm 3

Shared variables - initialization
Ø int flag[2]; flag[0] = flag[1] = 0;

flag[i] == 1 // Ti want to enter its critical section
Thread Ti
do {

flag[i] = 1;
while (flag[j] == 1) ;
critical section
flag[i] = 0;
remainder section

} while(1);

Satisfies mutual exclusion, but has dead-lock.

43

Approach 2: Peterson’s Algorithm

Classic software-based solution to achieve mutual exclusion
between 2 processes Pi and Pj. (year 1981)
Use two shared data items

int turn; //indicates whose turn it is to enter the critical section
boolean flag[]; //indicate if process is ready to enter the critical section

Code for ENTER_CRITICAL_SECTION
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j) ;

Code for EXIT_CRITICAL_SECTION
flag[i] = FALSE;

44

Approach 2: Peterson’s Algorithm

do {
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

 } while (TRUE);

Algorithm for Process Pi

45

Approach 3: Dekkers’s Algorithm

do {
 flag[i] = TRUE;
 while flag[j] == true {
 if turn ≠ i {
 flag[i] := false
 while turn ≠ i { }
 flag[i] := TRUE
 }
 }
 CRITICAL SECTION
 turn := j
 flag[i] = FALSE;
 EMAINDER SECTION
 } while (TRUE);

Algorithm for Process Pi
flag[0] := false flag[1] := false turn := 0 // or 1

46

An N-Process Solution: Eisenberg and McGuire's Algorithm

47

An N-Process Solution: Eisenberg and McGuire's Algorithm

0 i turn n-1

in (i,turn)

in(i,turn): turn~n-1， 0~i-1 （turn>i） ; turn~i-
1 (turn<i)
out(i,turn): i+1,turn（turn>i） ; i+1~n-1，
0~turn (turn<i)

0 i turn n-1

in (i,turn)

out (i,turn)

out (i,turn) out (i,turn)

in (i,turn)

48

INITIALIZATION

shared enum states {IDLE, WAITING, ACTIVE} flags[n -1];
shared int turn;
int index; /* not shared! */
...
turn = 0;
...
for (index=0; index<n; index++) {

flags[index] = IDLE;
}

49

ENTRY PROTOCOL (for Process i)
repeat {
 flags[i] = WAITING; /* announce that we need the resource */
 /* scan processes from the one with the turn up to ourselves. */
 /* repeat if necessary until the scan finds all processes idle */
 index = turn;
 while (index != i) { // turn~n-1， 0~i-1 （trun>i） ; turn~i-1 (turn<i)等

if (flag[index] != IDLE) index = turn;
else index = index+1 mod n;

 } //除Pturn外 ，P（out(i,turn)）会被挡住
 flags[i] = ACTIVE; /*now tentatively claim the resource */
 /* find the first active process besides ourselves, if any */
 index = 0;
 while ((index < n) && ((index == i) || (flags[index] != ACTIVE))) {

index = index+1;
 }
/* if there were no other active processes, AND if we have the turn
 or else whoever has it is idle, then proceed. Otherwise, repeat
 the whole sequence. */ //如果Pturn不是IDLE，多个P(in(i,turn))会被挡住
} until ((index >= n) && ((turn == i) || (flags[turn] == IDLE)));
 turn = i; /* claim the turn and proceed */

50

EXIT PROTOCOL (for Process i)

/* find a process which is not IDLE */
/* (if there are no others, we will find ourselves) */
index = turn+1 mod n;
while (flags[index] == IDLE) {

index = index+1 mod n;
}

/* give the turn to someone that needs it, or keep it */
turn = index;

/* we're finished now */
flag[i] = IDLE;

51

An N-Process Solution: Eisenberg and McGuire's Algorithm

52

N-Processes: Bakery Algorithm

Critical section for n processes

• Before entering its critical section, a process receives a number.

• The holder with the smallest number will enter the critical section.

• If processes Pi and Pj receive the same number, if i < j, then Pi is
served first; else Pj is served first.

• The numbering scheme always generates numbers in increasing
order of enumeration; i.e., 1,2,3,3,3,3,4,5...

53

Notation < lexicographical order
 (ticket #, process id #)

Ø (a,b) < (c,d) if a < c or if a == c and b < d
Ø max (a0,…, an-1) is a number, k, such that k >= ai

for i = 0, 1, 2, …, n – 1
Shared data

boolean choosing[n];
int number[n]; //ticket

Data structures are initialized to false and 0 respectively.

N-Processes: Bakery Algorithm

54

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;

for (j = 0; j < n; j++) {
 while (choosing[j]) ;
 while ((number[j] != 0) && ((number[j],j) < (number[i],i))) ;
}

critical section
number[i] = 0;

remainder section
} while (1);

N-Processes: Bakery Algorithm

Why
“Choosing” ??

55

If Pi is in its critical section and Pj (j!=i) has already chosen
its number[j] != 0, then

(number[i],i) < (number[j], j)
or

 (number[i],i) is the smallest of {(number[0], 0),
(number[1], 1), (number[2], 2), … }
Mutual exclusion. Only the process with the smallest
(number[i],i) can enter its critical section.
Progesss requirement and bounded waiting. The processes
enter their critical section on a first-come, first-served
business.

N-Processes: Bakery Algorithm

56

Comments on Software-Based Solution

Dekker’s Algorithm (1965)‏: This is the first correct solution proposed
for the two-thread (two-process) case.
Bakery Algorithm (Lamport 1979)‏:A Solution to the Critical Section
problem for n threads

Complicated
Ø Need shared data items between any two processes

Need busy-waiting
Ø Waste CPU time

Really no pure software solution without some hardware guarantee!
Ø Peterson’s algorithm requires atomic LOAD and STORE instructions

57

Outline

Background
Basic Concepts
Critical Section
Approach 1: Disabling Hardware Interrupt
Approach 2: Software-based Solution
Approach 3: Higher-level Abstractions

58

Approach 3: Higher-level Abstractions

Hardware provides some primitives
Ø Like disabling interrupt, atomic instructions, etc.
Ø Most modern architecture do

OS provides higher-level programming abstractions to
simplify concurrent programming
Ø Examples: Locks, Semaphores
Ø Constructed from hardware primitives

59

High-level Abstraction: Locks

Lock as an abstract data type
Ø One binary state (locked/unlocked), two methods
Ø Lock::Acquire() – wait until lock is free, then grab it
Ø Lock::Release() – release the lock, waking up a waiter if any

Programming critical section with locks
Ø Previous example becomes easy:

lock_next_pid->Acquire();
new_pid = next_pid++ ;
lock_next_pid->Release();

60

Lock Implementation with Disabling Interrupts

A simple solution:

A better solution:

Lock::Acquire() {
 disable interrupts;
 while (value != FREE) {
 enable interrupts;
 disable interrupts;
 }
 value = BUSY;
 enable interrupts;
}

Lock::Acquire() {
 disable interrupts;
 while (value != FREE) {
 enable interrupts;
 disable interrupts;
 }
 value = BUSY;
 enable interrupts;
}

Lock::Release() {
 disable interrupts;
 value = FREE;
 enable interrupts;
}

Lock::Release() {
 disable interrupts;
 value = FREE;
 enable interrupts;
}

class Lock { int value = FREE; }class Lock { int value = FREE; }

Lock::Acquire() {
 disable interrupts;
}

Lock::Acquire() {
 disable interrupts;
}

Lock::Release() {
 enable interrupts;
}

Lock::Release() {
 enable interrupts;
}

61

Hardware Primitives – Atomic Instructions

Most modern architectures provide special atomic
instructions
Ø By special memory access circuitry
Ø For both uni-processor and multi-processor

Test-and-Set
Ø Read a value from memory
Ø Test if the value is 1 (and return true or false)
Ø Set the memory value to 1

Compare-and-Swap(Exchange)
Ø Read a value from memory
Ø Compare if the value equals a given constant
Ø If true, write a given new value to the memory location

62

boolean TestAndSet (boolean *target)‏
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }

 void Exchange (boolean *a, boolean *b)‏
 {
 boolean temp = *a;
 *a = *b;
 *b = temp:
 }

63

Implementing Locks with Test-and-Set

If lock is free, then test-and-set reads 0
and sets value to 1  lock is set to busy
and Acquire completes

If lock is busy, the test-and-set reads 1
and sets value to 1  no change in
lock’s status and Acquire loops (spins)

If lock is free, then test-and-set reads 0
and sets value to 1  lock is set to busy
and Acquire completes

If lock is busy, the test-and-set reads 1
and sets value to 1  no change in
lock’s status and Acquire loops (spins)

class Lock {
 int value = 0;
}

class Lock {
 int value = 0;
}

Lock::Acquire() {
 while (test-and-set(value))
 ; //spin
}

Lock::Acquire() {
 while (test-and-set(value))
 ; //spin
}

Lock::Release() {
 value = 0;
}

Lock::Release() {
 value = 0;
}

64

Spinlock

A lock that uses busy-waiting
Ø Like the above implemented with test-and-set
Ø Threads consume CPU cycles while waiting

Can you do better? And when?

Lock::Acquire() {
 while (test-and-set(value))
 ; //spin
}

Lock::Acquire() {
 while (test-and-set(value))
 ; //spin
}

65

Implementing Locks without Busy Waiting

Lock::Acquire() {
 while (test-and-set(value))
 ; // spin
}

Lock::Release() {
 value = 0;
}

Lock::Acquire() {
 while (test-and-set(value))
 ; // spin
}

Lock::Release() {
 value = 0;
}

class Lock {
 int value = 0;
 WaitQueue q;
}

Lock::Acquire() {
 while (test-and-set(value)) {
 add this TCB to wait queue q;
 schedule();
 }
}

Lock::Release() {
 value = 0;
 remove one thread t from q;
 wakeup(t);
}

class Lock {
 int value = 0;
 WaitQueue q;
}

Lock::Acquire() {
 while (test-and-set(value)) {
 add this TCB to wait queue q;
 schedule();
 }
}

Lock::Release() {
 value = 0;
 remove one thread t from q;
 wakeup(t);
}

Without busy waitingWith busy waiting

How to use exchange to implement Lock?

66

Implementing Locks using exchange

Shared data (initialized to 0):
Ø int lock = 0;

Thread Ti
int key;
do {

key = 1;
while (key == 1) exchange(lock,key);

critical section
lock = 0;

remainder section
}

67

Codes: Spin Lock

Thread 1

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;

spin_lock(&mr_lock);
/* critical section */
spin_unlock(&mr_lock);

68

Mutual Exclusion Machine Instructions

Advantages
Ø Applicable to any number of processes on either a

single processor or multiple processors sharing main
memory

Ø It is simple and therefore easy to verify
Ø It can be used to support multiple critical sections

69

Mutual Exclusion Machine Instructions

Disadvantages
Ø Busy-waiting consumes processor time
Ø Starvation is possible when a process leaves a critical

section and more than one process is waiting.
Ø Deadlock

 If a low priority process has the critical
region and a higher priority process needs,
the higher priority process will obtain the
processor to wait for the critical region

70

Implementing Locks: Summary

Locks are higher-level programming abstraction
Ø Mutual exclusion can be implemented using locks
Ø Generally require some level of hardware support

Two common implementation approaches
Ø Disable interrupts (uni-processor only)
Ø Atomic instructions (uni- and multi-processor arch.)

Implementation alternative:
Ø Busy-waiting
Ø Minimal Busy-waiting

Is this sufficient?
Ø What if you want to synchronize on a condition?

71

Bounded Buffer Producer-Consumer Problem

N buffers, one producer adds to the buffer, one consumer
subtracts from the buffer
Ø Must wait if buffer is empty or full
Ø Locking is insufficient

BoundedBuffer::Deposit(c) {
 lock->Acquire();
 while (count == n) { … };
 Add c to the buffer;
 count++;
 lock->Release();
}

BoundedBuffer::Deposit(c) {
 lock->Acquire();
 while (count == n) { … };
 Add c to the buffer;
 count++;
 lock->Release();
}

BoundedBuffer::Remove(c){
 lock->Acquire();
 while (count == 0) { … };
 Remove c from buffer;
 count--;
 lock->Release();
}

BoundedBuffer::Remove(c){
 lock->Acquire();
 while (count == 0) { … };
 Remove c from buffer;
 count--;
 lock->Release();
}

class BoundedBuffer {
 …
 Lock lock;
 int count = 0;
}

class BoundedBuffer {
 …
 Lock lock;
 int count = 0;
}

72

Reference

materials from Dr. Zhang Yong Guang in MSRA
William Stallings, Operating Systems-Internals and Design
Principles(5th Edition), Prentice Hall, 2005
Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
Operating system concepts (7th Edition), John Wiley &
Sons, 2004
An N-Process Solution: Eisenberg and McGuire's
Algorithm,
http://www.cs.wvu.edu/~jdm/classes/cs550/notes/tech/mut
ex/Eisenberg.html

