@izt

Operating Systems

Lecture 10: Synchronization

IS
Department of Computer Science & Technology
Tsinghua University

114

ﬂg‘
05 Outline

¢ Background

¢ Basic Concepts

¢ Critical Section

¢ Approach 1: Disabling Hardware Interrupt
¢ Approach 2: Software-based Solution

¢ Approach 3: Higher-level Abstractions

Multi-programming

¢ So far in this course
@ Multi-programming: an important feature of modern OS
@ Parallelism is good (why?)
4 Hint: multiple concurrent entities: CPU(s), /O, ..., users, ...
@ Process/thread: OS abstractions to support multi-programming
@ CPU schedule: mechanism to realize multi-programming
@ Scheduling algorithms — different policies

+ This and next week

@ Collaborative multi-programming and the concurrency problem

0s .
US Correctness with concurrent threads

+ Independent threads:
@ No state shared with other threads
@ Deterministic 6 Input state determines results
@ Reproducible 6 Can recreate Starting Conditions, 1/0
@ Scheduling order doesn’t matter

¢+ Cooperating threads:

@ Shared state between multiple threads
@ Non-deterministic
@ Non-reproducible

+ Non-deterministic and Non-reproducible means that bugs
can be intermittent

@ Sometimes called “Heisenbugs”

0S

> Why allow cooperating threads?

+ People cooperate, so computers/devices must cooperate
¢+ Advantage 1: Share resources

@ One computer, many users
@ One bank balance, many ATMs
@ Embedded systems (robot control: coordinate arm & hand)

¢+ Advantage 2: Speedup
@ Overlap I/O and computation
@ Multiprocessors — chop up program into parallel pieces

¢+ Advantage 3: Modularity

@ Chop large problem up into simpler pieces
4 To compile, for instance, gcc calls cpp | ccl | cc2 |as | 1d

@ Makes system easier to extend

2

@'

> Example: Creating a New Process ID

+ A program calls fork() to create a new process
@ OS needs to assign a new and unique process ID
@ So somewhere in the kernel, this system call will do
4 new pid = next pid++ ;
@ Translating into machine instructions
4 LOAD next pid Regl
4 STORE Regl new pid
4 INC Regl
4 STORE Regl next pid

+ Assume two processes execute concurrently

@ Ifnext pidis 100, then one process should get 100, the other
should get 101, and next pid should increase to 102

2

@(

© Work correctly under all possible interleaving?

¢ Process 1 ¢+ Process 2
LOAD next pid Regl
STORE Regl new pid | N
LOAD next pid Regl
STORE Regl new_ pid
INC Regl
STORE Regl next pid

____________ 3
INC Regl
STORE Regl next pid

+ Gets 100 as the new PID + Gets 100 as the new PID
@ next pid becomes 101 @ next pid becomes 101

Concurrency: Correctness Requirements

¢ Threaded programs must work for all interleavings of
thread instruction sequences

@ Cooperating threads inherently non-deterministic and non-
reproducible

@ Really hard to debug unless carefully designed!

+ Need to be careful about correctness of concurrent
programs, since non-deterministic
@ Always write down behavior first

@ Impulse is to start coding first, then when it doesn’t work, pull hair
out

@ Instead, think first, then code

114

ﬂg‘
05 Outline

¢ Background

¢ Basic Concepts

¢ Critical Section

¢ Approach 1: Disabling Hardware Interrupt
¢ Approach 2: Software-based Solution

¢ Approach 3: Higher-level Abstractions

114

«
~ Concept: Race Condition

¢ A flaw 1n the system where the outcome depends on the
sequence/timing of concurrent executions or events
@ Like the previous example
@ Non-deterministic
@ Non-reproducible

¢ How do you avoid such race condition in an OS design?

1r

114

Concept: Atomic Operation

+ An atomic operation is one that executes to completion
without any interruption or failure
@ Either it executes to completion, or
@ 1t did not execute at all, and
@ no one else should see a partially-executed state

+ Operations are often not atomic
@ Many that we thought to be are not so by the computer
@ Not even a simple statement like “x++ !
4 Translated into a sequence of 3 instructions
@ Sometimes not even so for a machine instruction

4 Remember pipeline, super-scalar, out-of-order, page fault?

11

124

c
2 Another Concurrent Program Example

¢+ Two threads, A and B, compete with each other
@ One tries to increment a shared counter

@ The other tries to decrement the counter

Thread A Thread B

1=0; 1=0;

while (1 < 10) while (1> -10)
i=1i+1; 1i=1—1;

printf(“A wins!”); printf(“B wins!”);

@ Assume that memory loads and stores are atomic, but incrementing
and decrementing are not atomic

¢ Who wins?
+ [s 1t guaranteed that someone wins?

¢+ What it both threads have their own CPU running at same
speed?

12

it

Concepts

*

*

*

Critical section

@ A section of code within a process that requires access to shared resources
and which may not be executed while another process is in a
corresponding section of code.

Mutual exclusion

@ The requirement that when one process 1s 1n a critical section that accesses
shared resources, no other process may be in a critical section that
accesses any of those shared resources.

Deadlock

@ A situation in which two or more processes are unable to proceed because
each 1s waiting for one of the others to do something.

Starvation

@ A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it 1s able to proceed, it is never chosen.

13

c
2 Motivation Example: “Too much milk”

2

+ (reat thing about OS’s — analogy between problenj

and problems in real life

@ Help you understand real life problems better

@ But, computers are much stupider than people

¢+ Example: People need to coordinate:

be 0 Howf, d i Howf, d L

39r n,, wal gve OoPTI k, Fp ew

337 noyho F, vfk wo

3slr | weho ykfk vo n,, wal gwe OoPTIl k, Fp ew
3sl7 LI Bp ew noyho F, vfk wvo

32r | who m p out | kp ew | wano ykfk, vo

327 y: yB LI Bp ew

33r i weho m p out!l kp ewy: yB

15

Too Much Milk: Correctness Properties

+ What are the correctness properties for the “Too much
milk” problem?
@ Never more than one person buys
@ Someone buys if needed

+ Synchronization: finding a solution to this problem
@ Assume only LOAD and STORE are atomic

@ Important: all synchronization involves “waiting”

+ For example, putting a key on the refrigerator
@ Lock it and take key if you are going to go buy milk
@ Fixes too much: what if someone only wants juice?
@ Of Course — how do we make this “lock” thing?

17

U5 Too Much Milk: Solution #1

+ Use a note to avoid buying too much milk:
@ Leave a note before buying (kind of “lock™)
@ Remove note after buying (kind of “unlock™)
@ Don’t buy if there 1s a note (i.e., wait until note is gone)

+ Example program:
if (noMilk) {
if (noNote) {
leave Note;
buy milk;
remove Note;

h
b

+ Does 1t work?

18

Solution #1

+ Result
@ Still too much milk although only occasionally!

@ Thread can get context switched after checking milk and note but
before buying milk!
+ Solution makes problem worse since fails intermittently
@ Makes it really hard to debug...
@ Must work despite what the dispatcher does!

19

@igrs

05 Too Much Milk: Solution #1%

¢ C(learly the Note 1s not quite blocking enough

¢ Let’s try a quick fix: just place note first
leave Note;
if (noMilk) {
if (noNote) {
buy milk;
;
h

remove note;

+ What happens here?

@ No one ever buys milk

U5 Too Much Milk Solution #2

+ How about labeled notes?

@ Now we can leave note before checking

+ Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {
if (noMilk) { if (noMilk) {
buy Milk; buy Milk;
h h
h h
remove note A; remove note B;

+ Does this work?

1A

05 Solution #2

+ Possible for neither thread to buy milk
@ Context switches at exactly the wrong times can lead each to think
that the other 1s going to buy
+ Really msidious:

@ Extremely unlikely that this would happen, but will at worse
possible time

@ Probably something like this in UNIX

'97

+ This kind of lockup 1s called “starvation

2r

U5 Too Much Milk Solution #3

¢+ A more complicated two-note solution:
Thread A Thread B

leave note A;

while (note B) {
do nothing;

if no note B, safe
for A to buy,

leave note B;

if (noNote A) {
if (noMilk) {

1f no note A,
safe for B to buy,

! otherwise wait buy milk; otherwise A is
it (noMiIK) { for B to quit first ! ’ either buying or
buy milk:) waiting for B to
’ uit
} remove note B; 1

remove note A;

¢ Does this work now?
@ Yes. Either safe to buy, or other will buy so ok to quit

+ But are you happy with the solution?

21

i

(@§

{
< Solution #3 discussion

+ [t works, but it’s really unsatisfactory
¢+ Really complex — even for this simple an example

@ Hard to convince yourself that this really works

+ A’s code 1s different from B’s
@ Code would have to be slightly different for each thread
@ What if lots of threads?

+ While A is waiting, it 1s consuming CPU time

@ This 1s so called “busy-waiting”

¢ s there a better way?

22

Goal is to Protect a Critical Piece of Code

+ Solution #3 protects a single “critical-section” piece of
code for each thread:
if (noMilk) {

buy milk;
)

+ A better way than solution #3

@ Have hardware provide better (higher-level) primitives than atomic
LOAD and STORE

@ Build higher-level programming abstractions on this new hardware
support

23

U5 Too Much Milk: Solution #4

+ Suppose we have some implementation of a lock
@ Lock.Acquire() — wait until lock 1s free, then grab
@ Lock.Release() — Unlock, waking up anyone waiting
@ These must be atomic operations — if two threads are waiting for
the lock and both see it’s free, only one succeeds to grab the lock
¢ Then our milk problem is easy:
milklock.Acquire();
if (nomilk) {
buy milk;
h
milklock.Release();

25

114

ﬂg‘
05 Outline

¢ Background

¢ Basic Concepts

¢ Critical Section

¢ Approac
¢ Approacl

h 1: Disabling Hardware Interrupt
h 2: Software-based Solution

¢ Approac

h 3: Higher-level Abstractions

27

Where are we going with Synchronization?

+ We are going to implement various higher-level
synchronization primitives using atomic operations

@ Everything is pretty painful if only atomic primitives are load and
store

@ Need to provide primitives useful at user-level

Locks Semaphores Monitors Send/Receive

28

Restricted Access to Critical Data/Resources

¢ Only through a piece of code segment
@ “Lock” before enter
@ Wait if already “locked”
@ Here comes the “critical section”
@ “Unlock” when done

+ Important properties for this code segment
@ Can only be executed by one process/thread at a time
@ Must not be aborted (i.e., must eventually finish)

+ Cooperative concurrent programs
@ Access data only through this code segment

29

Example Code Segment for Accessing next pid

¢+ Somewhere 1n the kernel, when serving fork() system call

ENTER_CRITICAL_SECTION

new pid = next pid++ ; Critical section
EXIT CRITICAL SECTION
> Code for entering

and leaving the
critical section

20

Critical Section

¢+ An important concept in concurrent programming

@ A segment of important code involved in reading and writing a
shared data area

@ Must be executed only by one process/thread at a time

+ Key assumptions:

@ Finite Progress Axiom: Processes execute at a finite, but otherwise
unknown, speed.

@ Processes cannot halt (by failing, or just terminating) inside critical
section

+ Used profusely in OS to protect data structures

@ Examples: queues, shared variables, lists, ...

2A

114

«
2 Critical Section Property

¢ Mutual exclusion: Atmost & threads are concurrently in
the critical section (very often k 1s 1)

¢ Progress: A thread that wants to enter the critical section,
will eventually succeed

¢ Bounded waiting: If a thread i is in entry section, then
there 1s a bound on the number of times that other threads are
allowed to enter the critical section before thread 1” s request
1s granted

¢ No busy waiting (optional): If a process is waiting for
entering its critical section, it 1s suspended until it 1s permitted
to enter.

3r

0S

i1t

{
® Mechanisms for Implementing Critical Section

+ Code for entering and leaving critical section
@ ENTER CRITICAL SECTION
@ EXIT CRITICAL SECTION

+ Basic mechanisms
@ Disabling interrupt
@ Software solution (e.g., Peterson’s algorithm)

@ Higher-level abstractions

¢+ Comparing different mechanisms

@ Performance: concurrency level

31

2

Q
“ QOutline

¢+ Background

¢ Basic Concepts

¢ (Critical Section

¢ Approacl
¢ Approacl

h 1: Disabling Hardware Interrupt
h 2: Software-based Solution

¢+ Approac

h 3: Higher-level Abstractions

32

0S

~ Approach 1: Disabling Hardware Interrupt

+ No interrupt, no context switch, hence no concurrency

@ Hardware delays the interrupt processing until interrupts are
enabled again

@ Most modern computer architecture provides instructions to do this

+ Entering critical section
@ Disable interrupts

+ Exiting critical section

@ Enable interrupts

33

i

@f

”
~ Disadvantage

+ Once interrupts are disable, the thread can’t be stopped
@ Whole system put to a stop for you
@ Can starve other threads

+ What if the critical section 1s arbitrarily long?

@ Can’t bound the amount of time needed to respond to interrupt
(may have hardware implications)

¢+ Must be used carefully!

35

Example: Disabling Interrupts in Linux

¢ Usually some small number of interrupt levels, statically
assigned (e.g., reset = 0, timer = 1, network = 3, disk = 4,
software = 7)

@ When you “disable interrupts” you disable them for your level and
higher.

@ When you reenable interrupts, you need to do so at the previous
level.

unsigned long flags;

local irq save(flags); // Disable & save
CRITICAL SECTION GOES HERE;

local irq restore(flags); // Reenable

37

(d’

2

«
~ Question

¢+ What 1s wrong with this code?

unsigned long flags;
local irq save(flags); // Disable & save

if (somethingBad) {
return ERROR BAD THING;
}

local irq restore(flags); // Reenable
return O;

38

2

(6’

«
2 Using Interrupt Correctly

¢ Make sure to re-enable interrupts along every possible
execution path.

unsigned long flags;
local irq save(flags); // Disable & save

if (somethingBad) {
local irgq restore(flags);
return ERROR_BAD_TH ING;

local irq restore(flags); // Reenable
return O;

S,: yM Il ka /CHZ CH p yxnelo-

39

114

& WQ‘
05 Outline

¢+ Background

¢ Basic Concepts

¢ (Critical Section

¢ Approac]
¢ Approac

h 1: Disabling Hardware Interrupt
h 2: Software-based Solution

¢+ Approac

h 3: Higher-level Abstractions

30

‘@S Approach 2: Peterson’s Algorithm
Initial Attempts to Solve Problem

Only 2 threads, 70 and 71
General structure of thread 77 (other thread 7j)
do {

enter section

critical section

exit section

reminder section
+ while (1);
Threads may share some common variables to synchronize
their actions.

3A

il74f

@i

Approach 2: Peterson’s Algorithm
First Attempt: Algorithm 1

+ Shared variables - initialization
% int turn = 0;
+ turn ==1 // indicates whose turn it 1s to enter the critical section
¢ Thread Ti
do {
while (turn !=1) ;
critical section
turn = j;
reminder section
+ while (1);
+ Satisfies mutual exclusion, but not progress some time

@ (T1do other thing, Tj want to continue to run, but have to wait Ti do
critical section)

5r

@it

0S

Approach 2: Peterson’s Algorithm
Second Attempt: Algorithm 2

+ Shared variables - initialization
@ 1nt flag[2]; flag[0] = flag[1] = O;

+ flag[i] == 1 //indicate if process is ready to enter the
critical section

¢ Thread Ti
do {
while (flag[j]==1) ;
flag[1] = 1;
critical section
flag[1] = 0;
remainder section
+ while(1);
d, plKyao(xdfed

51

@igrs

Approach 2: Peterson’s Algorithm
Third Attempt: Algorithm 3

+ Shared variables - initialization
@ 1nt flag[2]; flag[0] = flag[1] = O;
+ flag[i]==1 a1 want to enter its critical section
¢ Thread Ti
do {
flag[i] = 1;
while (flag[j]==1) ;
critical section
flag[1] = O;
remainder section
+ while(1);

[yk& Fof p | K yao(xd fe duM knyf . oy.)g xwP

52

2

05 Approach 2: Peterson’s Algorithm

¢+ (lassic software-based solution to achieve mutual exclusion
between 2 processes P1 and Pj. (year 1981)

+ Use two shared data 1items
int turn; //indicates whose turn it 1s to enter the critical section

boolean flag[]; //indicate if process is ready to enter the critical section

¢ Code for ENTER CRITICAL SECTION
flag[1] = TRUE;
turn = j;
while (flag[j] && turn ==)) ;

¢ Code for EXIT CRITICAL SECTION
flag[1] = FALSE;

53

ird

2 Approach 2: Peterson’s Algorithm

Algorithm for Process P;

do {
flag[1] = TRUE;
turn = j;
while (flag[j] && turn ==j);
CRITICAL SECTION
flag[1] = FALSE;
REMAINDER SECTION

+ while (TRUE);

55

114

2 Approach 3: Dekkers’s Algorithm

Algorithm for Process P;
flag[0] := false flag[1] := false turn := 0 // or 1

do {
flag[1] = TRUE;
while flag[j] == true {
if turn # 1 {
flag[1] := false
while turn = 1 { }
flag[1] := TRUE
b

j
CRITICAL SECTION

turn =]

flag[1] = FALSE;

EMAINDER SECTION
+ while (TRUE);

57

it

An N-Process Solution: Eisenberg and McGuire's Algorithm

The entry protocol
for the CR causes
process f to defer to

any process in the e -
range turnto (1) -~
which wishes to .~
enter the CR 7 j=1
/
7/
/ — -
/ -~ N
/ ///
// /
| /
, !
, !
' Cycle of
\ processes
urn |\
\
\
\
N
~
\\
0 n-1

If there is no claimant
process in the range
turn to (i=1) and no
later contention then
process | may set tum
to / and enter the CR:
now turn = |

\ When process 1
‘\ leaves the CR
it scans for a

successor that

\ has want-cror
| claim-cr set,

: Y staerting from

/ process (1+1)

\ \

58

NS
0o An N-Process Solution: Eisenberg and McGuire's Algorithm

: t (i,t
0 i out (i,turn) turn el

in (i,turn) in (i,turn)

0 turn in (i,turn)

out (i,turn) out (i,turn)

a@-~ak sk w; d)1, r; 91 (Kw<e +dw; 9
1

+H \d{ e
| ked Wd>=d¢ 1 wd (K wd<e +4 1: d)1,

v A vi{ e

59

114

U5 INITIALIZATION

fnyw. odl p fkykof DBAONUG i BbB/ } ui ? b N] FyOf*d)1!+
fnyw. ekl wd+

aka. o(+ c=d, kfnyw. &=
P

dw| r+

P

Fv-~a. o(| r+a. o({d+a. o(l | >D
FyOf*ad. o(! | BMIN+

]

50

fi2f

U5 ENTRY PROTOCOL (for Process i)

vt oykD
FyOf*d | Gi BB/} +c=ydd, | dxo kryk: o doo. kno wof, | wxo =
c=fxyd tv, xoffof i, p kno,do: éemkmo KW |t k , | VfodhofP=
c=wt oykd doxoffywB | dkakho fxyd Fal. f yatv, xoffof e @ =
a.o(| Kw+

while @. o(§ eDack wW; d)1, r; 91 (kMd<e +dwd; 91 Hd Wd{ ek

& +yOral. o(!' & BAhN>al. o | K vd+
odoa@.o(| @.o(l 1p,. d+
] afrHd vd4t , H (| kad Wd> S#35F
FyOf*e | 1 7 bH N+c=d, : kodkykdhodB xaye kno vof, | vxo =
c=Fal. ko first active process Mofe of , | foahof udydB =
@.o(| r+
while ~a. o({ d>qq ~a. o | | &' +yOf*a. o(! & i1 ?bE N>=D
@.o(| a&. o(l 1+
]
c=d kmow : ow d, , krovyxkdo tv, xof fofui VW& : o nyho kno K wd
, vodo : mohovnyf &d e aukrod tv, xoo. P Tkrov. € ouwtoyk
ko : m @ fo..l odxoP=calinHd vd A~ ZEBMN, £ H-al-ald vd =& #4143
] ldk@~al. o(<| d>gg ~Hdwd | | &' FyOfrHd wWd! | | BMN>=S>t
Mw| e =xye ko Kwyd. ty, xo0. =

5A

114

® EXIT PROTOCOL (for Process i)

c=Fa. y tv, xoff : nexmd d, KBMN =
=~ khmow yw d, , knovfu: o: eafd. , | fodof >=
@.o(| Kwl 1p,. d+
: map +oyOf*ad. o(! | | BMAN>D
@.o(| @.o(l 1p,. d+
]

=0do ko K \d k f, p o, do knykdoo. f &u, vwoot &=
Kwl| e o+

c: o[\/o E®dno. d,: =
FyOd | BAhN+

7r

it

ns
0o An N-Process Solution: Eisenberg and McGuire's Algorithm

procphase:

procphase:

P, P, P, P, P,

out-cr out-cr claim-cr out-cr out-cr

turn = 2‘—"”*

P, is in the CR, P, and P; execute the entry protocol:

Fo & £ Py Py Note that /and J
*i: 1 i are local to each
process

r h 1l = r
o esell] = want-c procphaselBl = want-cr

§/=P,2 is in the CR /! P, is in the CR
j=2
// P, cycles /l P, cycles

P, exits from the CR. After P, has completed its exit protocol:

out-cr || want-cr|| out-cr || want-cr|| out-cr
»
turn =3——

P, P, P, P, P,

\

procphasel2] = out-cr

j=3 =i
procphasel2] = out-cr . :
j=3 procphase|3) = claim-cr
procphasel3] = claim-cr .
j=tun fitun=3 turn = 3

/l P, cycles // enter CR

71

> N-Processes: Bakery Algorithm

Critical section for n processes
Before entering its critical section, a process receives a number.
The holder with the smallest number will enter the critical section.

If processes P; and P, receive the same number, 1f i <j, then P; 1s

served first; else P; is served first.

The numbering scheme always generates numbers in increasing

order of enumeration; i.e., 1,2,3,3,3,3.4,5...

72

7> N-Processes: Bakery Algorithm

+ Notation < lexicographical order
(ticket #, process id #)
@(ab)<(cd)ifa<corifa==cand b<d

@ max (a,,[] , a,.;) 1s a number, &, such that £k >=q,
fori=01,2,....,n-1

¢ Shared data
boolean choosing|n];
int number|n]; //ticket
¢ Data structures are 1nitialized to false and 0 respectively.

73

%> N-Processes: Bakery Algorithm

do {
choosing][i] = true;
number[i] = max(number|[0], number[1], ..., number [n - 1])+1;
choosing]i] = false;

for (j =0; j <nj; j++) {
while (choosing|j]) ;
while ((number(j] != 0) && ((number(j],j) < (number(i],i))) ;
]
critical section
number][i] = 0;
remainder section
} while (1);

Why
“Choosing” ??

75

% N-Processes: Bakery Algorithm

¢ If Pi1s in 1ts critical section and Pj (j/=i) has already chosen
its number[j] != 0, then

(number[i],i) < (number/[j], j)

or

(number[i],i) 1s the smallest of {(number/0], 0),
(number[1], 1), (number[2], 2), ... |

¢ Mutual exclusion. Only the process with the smallest
(number/[i],i) can enter its critical section.

¢ Progesss requirement and bounded waiting. The processes
enter their critical section on a first-come, first-served
business.

77

2

«
~ Comments on Software-Based Solution

¢+ Dekker’s Algorithm (1965} This 1s the first correct solution proposed
for the two-thread (two-process) case.

¢+ Bakery Algorithm (Lamport 1979): A Solution to the Critical Section
problem for n threads

¢+ Complicated

@ Need shared data items between any two processes
¢+ Need busy-waiting

@ Waste CPU time

¢+ Really no pure software solution without some hardware guarantee!

@ Peterson’s algorithm requires atomic LOAD and STORE instructions

78

114

& WQ‘
05 Outline

¢+ Background

¢ Basic Concepts

¢ (Critical Section

¢ Approac]
¢ Approacl

h 1: Disabling Hardware Interrupt
h 2: Software-based Solution

¢ Approac

h 3: Higher-level Abstractions

79

Approach 3: Higher-level Abstractions

¢+ Hardware provides some primitives
@ Like disabling interrupt, atomic instructions, etc.
@ Most modern architecture do

¢+ OS provides higher-level programming abstractions to
simplify concurrent programming
@ Examples: Locks, Semaphores
@ Constructed from hardware primitives

70

i

((B"

® High-level Abstraction: Locks

¢+ Lock as an abstract data type
@ One binary state (locked/unlocked), two methods
@ Lock::Acquire() — wait until lock 1s free, then grab it
@ Lock::Release() — release the lock, waking up a waiter 1f any

+ Programming critical section with locks

@ Previous example becomes easy:

lock next pid->Acquire();
new pid =next pid++ ;
lock next pid->Release();

7A

kE3)

> Lock Implementation with Disabling Interrupts

¢+ A simple solution:

Lock::Acquire() {
disable interrupts;

;

¢ A better solution:

class Lock { int value = FREE; }

Lock::Acquire() {

disable interrupts;

while (value != FREE) {
enable interrupts;
disable interrupts;

b

value = BUSY;

enable interrupts;

b

Lock::Release() {
enable interrupts;

}

Lock::Release() {
disable interrupts;
value = FREE;
enable interrupts;

;

8r

134

Hardware Primitives — Atomic Instructions

+ Most modern architectures provide special atomic
Instructions
@ By special memory access circuitry
@ For both uni-processor and multi-processor

¢+ Test-and-Set
@ Read a value from memory
@ Test if the value is 1 (and return true or false)
@ Set the memory value to 1

¢+ Compare-and-Swap(Exchange)
@ Read a value from memory

@ Compare if the value equals a given constant

@ If true, write a given new value to the memory location

81

05

boolean TestAndSet (boolean *target)
d

boolean rv = *target;
*target = TRUE;

return rv:
§
void Exchange (boolean *a, boolean *b)
d
boolean temp = *a;
*a = *b;
*b = temp:

82

(O)’

> Implementing Locks with Test-and-Set

114

class Lock {

}

int value = 0;

Lock::Acquire() {

while (test-and-set(value))
; //spin

Lock::Release() {

j

value = 0;

If lock is free, then test-and-set reads 0
and sets value to 1 =» lock is set to busy
and Acquire completes

If lock is busy, the test-and-set reads 1
and sets value to 1 =» no change in
lock’s status and Acquire loops (spins)

83

i

Spinlock

Lock::Acquire() {
while (test-and-set(value))
; //spin
b

+ A lock that uses busy-waiting
@ Like the above implemented with test-and-set
@ Threads consume CPU cycles while waiting

¢+ Can you do better? And when?

85

114

@

> Implementing Locks without Busy Waiting

G &mM fB : ydaO

Lock::Acquire() {

b

while (test-and-set(value))
; // spin

Lock::Release() {

S, :

}

value = 0;

Ge&m | kM fB: yaaO

class Lock {
int value = 0;
WaitQueue q;
h

Lock::Acquire() {
while (test-and-set(value)) {

add this TCB to wait queue q;
schedule();

b
b

Lock::Release() {
value = 0;
remove one thread t from q;
wakeup(t);

b

k | fo o(xnydOo k & tap odkn, xw

87

05 Implementing Locks using exchange

¢ Shared data (initialized to 0):
% int lock = 0;

Thread Ti
int key;
do {
key = 1;
while (key == 1) exchange(lock,key);
critical section
lock = 0;
remainder section

88

@’

114

® Codes: Spin Lock

bmoy. 1

spinlock t mr lock = SPIN LOCK UNLOCKED;

spin lock(&mr lock);
/* critical section */
spin unlock (&mr lock);

89

@ilizt

)
05 Mutual Exclusion Machine Instructions

+ Advantages

@ Applicable to any number of processes on either a
single processor or multiple processors sharing main
memory

@ It 1s simple and therefore easy to verify
@ It can be used to support multiple critical sections

80

kE3)

U5 Mutual Exclusion Machine Instructions

¢ Disadvantages
@ Busy-waiting consumes processor time

@ Starvation 1s possible when a process leaves a critical
section and more than one process 1s waiting.

@ Deadlock

4 If a low priority process has the critical
region and a higher priority process needs,
the higher priority process will obtain the
processor to wait for the critical region

8A

fi2f

@(

> Implementing Locks: Summary

+ Locks are higher-level programming abstraction
@ Mutual exclusion can be implemented using locks
@ Generally require some level of hardware support

+ Two common implementation approaches
@ Disable interrupts (uni-processor only)

@ Atomic instructions (uni- and multi-processor arch.)

+ Implementation alternative:
@ Busy-waiting
@ Minimal Busy-waiting

+ [s this sufficient?

@ What if you want to synchronize on a condition?

9r

114

> Bounded Buffer Producer-Consumer Problem

+ N buffers, one producer adds to the buffer, one consumer
subtracts from the buffer
@ Must wait if buffer 1s empty or full
@ Locking 1s insufficient

class BoundedBuffer {

Lock lock;

int count = 0;
h
BoundedBuffer::Deposit(c) { BoundedBuffer::Remove(c){
lock->Acquire(); lock->Acquire();
while (count==n) { ... }; while (count==20) { ... };
Add c to the buffer; Remove ¢ from buffer;
count+-+; count--;
lock->Release(); lock->Release();

91

Nns
U5 Reference

¢+ materials from Dr. Zhang Yong Guang in MSRA

¢+ William Stallings, Operating Systems-Internals and Design
Principles(5th Edition), Prentice Hall, 2005

¢+ Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
Operating system concepts (7th Edition), John Wiley &
Sons, 2004

¢ An N-Process Solution: Eisenberg and McGuire's
Algorithm,
http://www.cs.wvu.edu/~jdm/classes/cs550/notes/tech/mut
ex/Eisenberg.html

92

