
1

Operating Systems

 Lecture 2
 Interrupt & Syscall

 IIIS & CS

Tsinghua University

Acknowledgement:

materials from Dr. Zhang Yong Guang in MSRA,

And from http://williamstallings.com/OS/OS5e.html , http://www.os-book.com

http://williamstallings.com/OS/OS5e.html
http://www.os-book.com/
http://www.os-book.com/
http://www.os-book.com/

2

Outline

Interrupts & Exceptions
 Background

 Interrupt v.s. Exception

 Interrupt Process Mechanism

 Nested Execution

Syscall
 Concept of System Calls

 System Call Implementation

 Difference between routine call and system call

System boot

3

Background

kernel is trusted third-party that runs the machine

Only the kernel can execute privileged instructions

How can a user program change to the kernel address space?

How can the kernel transfer to a user address space?

What happens when a device attached to the computer needs

attention?

System Call

Device Interrupt

4

Background

System Call (aka: Trap from user program)

 a system call invoked by a user program

Exception (from ill program)

 an illegal instruction or other kind of bad processor state (memory

fault, etc.).

Interrupt (from device)

 timer/net interrupt from different hardware device.

5

Interrupts vs Exceptions

Hardware support for getting CPUs attention

 Often transfers from user/kernel to kernel mode

Nested interrupts are possible; interrupt can occur while

an interrupt handler is already executing (in kernel mode)

 Asynchronous: device or timer generated hardware event

Unrelated to currently executing process

 Synchronous: immediate result of last instruction

Often represents a hardware error condition

Intel terminology and hardware

 Irqs, vectors, IDT, gates, PIC, APIC

Interrupt handling: data structures, flow of control

Delayed Handlers: softirqs, tasklets, bottom halves

6

Interrupts vs Exceptions

Similar to context switch (but lighter weight)

 Hardware saves a small amount of context on stack

 Includes interrupted instruction if restart needed

 Execution resumes with special “iret” instruction

Structure: top and bottom halves

 Top-half: do minimum work and return

 Bottom-half: deferred processing

Handler code executed in response

 Possible to temporarily mask interrupts

 Handlers need not be reentrant

 But other interrupts can occur, causing nesting

7

Interrupt Process Mechanism

An interrupt is an internal or external event that forces a

hardware call to a function called an interrupt service routine.

 Interrupt Enable Flag must be set [CPU initialization]

1. Internal or external event forces interrupt flag to be set

2. Event forces routine at interrupt vector to be called

hardware

8

Interrupt Process Mechanism

Processor state must be preserved [compiler]

 Interrupt service routine (ISR) must process data [os

developer’s code]

 Interrupt flag must be cleared [os developer’s code]

Processor state must be restored [compiler]

software

9

Nested Execution

Interrupts can be interrupted

 By different interrupts; handlers need not be reentrant

 No notion of priority in Linux

 Small portions execute with interrupts disabled

 Interrupts remain pending until acked by CPU

Exceptions can be interrupted

 By interrupts (devices needing service)

Exceptions can nest two levels deep

 Exceptions indicate coding error

 Exception code (kernel code) shouldn’t have bugs

 Page fault is possible (trying to touch user data)

10

Outline

Interrupts & Exceptions
 Background

 Interrupt v.s. Exception

 Interrupt Process Mechanism

 Nested Execution

Syscall
 Concept of System Calls

 System Call Implementation

 Difference between routine call and system call

System boot

11

Standard C Library Example

• C program invoking printf() library call, which calls
write() system call

12

API – System Call – OS Relationship

13

System Calls

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application

Program Interface (API) rather than direct system call use

Three most common APIs

 Win32 API for Windows

 POSIX API for POSIX-based systems (including virtually all

versions of UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

14

Example of System Calls

• System call sequence to copy the
contents of one file to another file

// System call numbers

#define SYS_fork 1

#define SYS_exit 2

#define SYS_wait 3

#define SYS_pipe 4

#define SYS_write 5

#define SYS_read 6

#define SYS_close 7

#define SYS_kill 8

#define SYS_exec 9

#define SYS_open 10

#define SYS_mknod 11

#define SYS_unlink 12

#define SYS_fstat 13

#define SYS_link 14

#define SYS_mkdir 15

#define SYS_chdir 16

#define SYS_dup 17

#define SYS_getpid 18

#define SYS_sbrk 19

#define SYS_sleep 20

#define SYS_procmem 21

15

Example of user-level syscall API

 Consider read() function in ucore—a function for reading from a

file

in user/libs/file.h: int read(int fd, void * buf, int

length)

 A description of the parameters passed to read()

int fd—the file to be read

void * buf—a buffer where the data will be read

into and written from

int length—the number of bytes to be read into the

buffer

int return_value: the number of bytes that readed

 Example

in sfs_filetest1.c: ret = read(fd, data, len);

16

Example of user-level syscall API

in sfs_filetest1.c: ret=read(fd,data,len);
 ……

 8029a1: 8b 45 10 mov 0x10(%ebp),%eax

 8029a4: 89 44 24 08 mov %eax,0x8(%esp)

 8029a8: 8b 45 0c mov 0xc(%ebp),%eax

 8029ab: 89 44 24 04 mov %eax,0x4(%esp)

 8029af: 8b 45 08 mov 0x8(%ebp),%eax

 8029b2: 89 04 24 mov %eax,(%esp)

 8029b5: e8 33 d8 ff ff call 8001ed <read>

syscall(int num, ...) {

...

 asm volatile (

 "int %1;"

 : "=a" (ret)

 : "i" (T_SYSCALL),

 "a" (num),

 "d" (a[0]),

 "c" (a[1]),

 "b" (a[2]),

 "D" (a[3]),

 "S" (a[4])

 : "cc", "memory");

 return ret;

17

System Call Implementation

• Typically, a number associated with each system call
o System-call interface maintains a table indexed according to these

numbers

• The system call interface invokes intended system call in

OS kernel and returns status of the system call and any
return values

• The caller need know nothing about how the system call is
implemented
o Just needs to obey API and understand what OS will do as a result

call

o Most details of OS interface hidden from programmer by API
 Managed by run-time support library (set of functions built into libraries

included with compiler)

18

Steps in Making a System Call

There are 6 important steps in making the system call read
(fd, buffer, length)

1. alltraps(): in kern/trap/trapentry.S

2. trap(): tf->trapno == T_SYSCALL , in kern/trap/trap.c

3. syscall(): tf->tf_regs.reg_eax ==SYS_read, in /kern/syscall/syscall.c

4. sys_read(): get fd, buf, length from tf->sp, in kern/syscall/syscall.c

5. sysfile_read(): read file content, in kern/fs/sysfile.c

6. trapret(): in kern/trap/trapentry.S

19

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call
o Exact type and amount of information vary according to OS and

call

• Three general methods used to pass parameters to the OS
o Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

o Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
 This approach taken by Linux and Solaris

o Parameters placed, or pushed, onto the stack by the program and

popped off the stack by the operating system (ucore methord)
o Block and stack methods do not limit the number or length of

parameters being passed

20

Kernel Entry and Exit

20

Kernel

Devices

Library Code

System Call Interface

trap /

interrupt

table

system
call

table
scheduler boot

IPI: inter-

processor

interrupt

30h

exceptions

(error traps)

interrupt
device

dialog

trap

page faults

21

Difference between routine call and system call

int or trap are used for system call

Ring level and stack are switched during system call

call or jmp are used for routine call

No stack switch during routine call

Reference: http://www.intel.com/products/processor/manuals/index.htm

http://www.intel.com/products/processor/manuals/index.htm

22

Cost of Crossing the “Kernel Barrier”

more than a procedure call

less than a context switch

costs:

vectoring mechanism

 establishing kernel stack

validating parameters

kernel mapped to user address space?

updating page map permissions

kernel in a separate address space?

reloading page maps

invalidating cache, TLB

23

Outline

Interrupts & Exceptions
 Background

 Interrupt v.s. Exception

 Interrupt Process Mechanism

 Nested Execution

Syscall
 Concept of System Calls

 System Call Implementation

 Difference between routine call and system call

System boot

24

Memory Map at Power up

MAPPED TO

ROM

FREE SPACE

FREE SPACE

0x0A0000

0x100000

0x000000

640KB

1MB

25

ROM shadowing

The address space occupied by BIOS Roms is not available

as useful RAM.

BIOS can make use of this RAM to shadow its ROM.

Write protects this shadowed RAM, disables ROM.

26

Start up Sequence

CS:IP = 0xf000:fff0.

Starts in real mode.

 16 bit mode.

 IP = 16 bit offset

 CS = Segment offset in 16 byte units.

 i.e PC = 16*CS+IP

 Max: 1MB of address space.

 A20 pain from the past.

27

Start up Sequence

POST(Power on self test)

Looks for video card and executes its BIOS.

Looks for other option ROMS e.g IDE disk.

Does more system inventory e.g COM ports, setting hard

disk params.

Plug and play support.

Sets up IDT and the interrupt service routines

28

BIOS contd…

Looks for bootable media.

Loads Boot sector(512 bytes) of the media at 0x7c00 .

Jumps to CS:IP = 0000:7c00 with DL=drive id of bootable

drive.

BIOS data area from 0x0000 to 0x7c00.

(Contains IDT,ISR’s and data).

29

BIOS system calls

BIOS provides low level I/O routines through interrupts.

Main services are:

 INT 15h: Get memory map.

 INT 13h: Disk I/O interrupts.

 INT 19h: Bootstrap loader.

30

Memory Map at this stage

BIOS DATA

BOOT

SECTOR

BIOS ROM

VGA

0x0000

0x00100000 (1MB)

0xA0000 (640KB)

0x7C00

FREE

SPACE

31

Switches processor into 32-bit mode

 # Switch from real to protected mode, using a bootstrap GDT

 # and segment translation that makes virtual addresses

 # identical to physical addresses, so that the

 # effective memory map does not change during the switch.

 lgdt gdtdesc

 movl %cr0, %eax

 orl $CR0_PE_ON, %eax

 movl %eax, %cr0

 # Jump to next instruction, but in 32-bit code segment.

 # Switches processor into 32-bit mode.

 ljmp $PROT_MODE_CSEG, $protcseg

 .code32 # Assemble for 32-bit mode

32

This week’s Work

Finish lab #1

Homework #1

