#ifndef __KERN_MM_MMU_H__ #define __KERN_MM_MMU_H__ /* Eflags register */ #define FL_CF 0x00000001 // Carry Flag #define FL_PF 0x00000004 // Parity Flag #define FL_AF 0x00000010 // Auxiliary carry Flag #define FL_ZF 0x00000040 // Zero Flag #define FL_SF 0x00000080 // Sign Flag #define FL_TF 0x00000100 // Trap Flag #define FL_IF 0x00000200 // Interrupt Flag #define FL_DF 0x00000400 // Direction Flag #define FL_OF 0x00000800 // Overflow Flag #define FL_IOPL_MASK 0x00003000 // I/O Privilege Level bitmask #define FL_IOPL_0 0x00000000 // IOPL == 0 #define FL_IOPL_1 0x00001000 // IOPL == 1 #define FL_IOPL_2 0x00002000 // IOPL == 2 #define FL_IOPL_3 0x00003000 // IOPL == 3 #define FL_NT 0x00004000 // Nested Task #define FL_RF 0x00010000 // Resume Flag #define FL_VM 0x00020000 // Virtual 8086 mode #define FL_AC 0x00040000 // Alignment Check #define FL_VIF 0x00080000 // Virtual Interrupt Flag #define FL_VIP 0x00100000 // Virtual Interrupt Pending #define FL_ID 0x00200000 // ID flag /* Application segment type bits */ #define STA_X 0x8 // Executable segment #define STA_E 0x4 // Expand down (non-executable segments) #define STA_C 0x4 // Conforming code segment (executable only) #define STA_W 0x2 // Writeable (non-executable segments) #define STA_R 0x2 // Readable (executable segments) #define STA_A 0x1 // Accessed /* System segment type bits */ #define STS_T16A 0x1 // Available 16-bit TSS #define STS_LDT 0x2 // Local Descriptor Table #define STS_T16B 0x3 // Busy 16-bit TSS #define STS_CG16 0x4 // 16-bit Call Gate #define STS_TG 0x5 // Task Gate / Coum Transmitions #define STS_IG16 0x6 // 16-bit Interrupt Gate #define STS_TG16 0x7 // 16-bit Trap Gate #define STS_T32A 0x9 // Available 32-bit TSS #define STS_T32B 0xB // Busy 32-bit TSS #define STS_CG32 0xC // 32-bit Call Gate #define STS_IG32 0xE // 32-bit Interrupt Gate #define STS_TG32 0xF // 32-bit Trap Gate #ifdef __ASSEMBLER__ #define SEG_NULL \ .word 0, 0; \ .byte 0, 0, 0, 0 #define SEG_ASM(type,base,lim) \ .word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \ .byte (((base) >> 16) & 0xff), (0x90 | (type)), \ (0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff) #else /* not __ASSEMBLER__ */ #include /* Gate descriptors for interrupts and traps */ struct gatedesc { unsigned gd_off_15_0 : 16; // low 16 bits of offset in segment unsigned gd_ss : 16; // segment selector unsigned gd_args : 5; // # args, 0 for interrupt/trap gates unsigned gd_rsv1 : 3; // reserved(should be zero I guess) unsigned gd_type : 4; // type(STS_{TG,IG32,TG32}) unsigned gd_s : 1; // must be 0 (system) unsigned gd_dpl : 2; // descriptor(meaning new) privilege level unsigned gd_p : 1; // Present unsigned gd_off_31_16 : 16; // high bits of offset in segment }; /* * * Set up a normal interrupt/trap gate descriptor * - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate * - sel: Code segment selector for interrupt/trap handler * - off: Offset in code segment for interrupt/trap handler * - dpl: Descriptor Privilege Level - the privilege level required * for software to invoke this interrupt/trap gate explicitly * using an int instruction. * */ #define SETGATE(gate, istrap, sel, off, dpl) { \ (gate).gd_off_15_0 = (uint32_t)(off) & 0xffff; \ (gate).gd_ss = (sel); \ (gate).gd_args = 0; \ (gate).gd_rsv1 = 0; \ (gate).gd_type = (istrap) ? STS_TG32 : STS_IG32; \ (gate).gd_s = 0; \ (gate).gd_dpl = (dpl); \ (gate).gd_p = 1; \ (gate).gd_off_31_16 = (uint32_t)(off) >> 16; \ } /* Set up a call gate descriptor */ #define SETCALLGATE(gate, ss, off, dpl) { \ (gate).gd_off_15_0 = (uint32_t)(off) & 0xffff; \ (gate).gd_ss = (ss); \ (gate).gd_args = 0; \ (gate).gd_rsv1 = 0; \ (gate).gd_type = STS_CG32; \ (gate).gd_s = 0; \ (gate).gd_dpl = (dpl); \ (gate).gd_p = 1; \ (gate).gd_off_31_16 = (uint32_t)(off) >> 16; \ } /* segment descriptors */ struct segdesc { unsigned sd_lim_15_0 : 16; // low bits of segment limit unsigned sd_base_15_0 : 16; // low bits of segment base address unsigned sd_base_23_16 : 8; // middle bits of segment base address unsigned sd_type : 4; // segment type (see STS_ constants) unsigned sd_s : 1; // 0 = system, 1 = application unsigned sd_dpl : 2; // descriptor Privilege Level unsigned sd_p : 1; // present unsigned sd_lim_19_16 : 4; // high bits of segment limit unsigned sd_avl : 1; // unused (available for software use) unsigned sd_rsv1 : 1; // reserved unsigned sd_db : 1; // 0 = 16-bit segment, 1 = 32-bit segment unsigned sd_g : 1; // granularity: limit scaled by 4K when set unsigned sd_base_31_24 : 8; // high bits of segment base address }; #define SEG_NULL \ (struct segdesc) {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} #define SEG(type, base, lim, dpl) \ (struct segdesc) { \ ((lim) >> 12) & 0xffff, (base) & 0xffff, \ ((base) >> 16) & 0xff, type, 1, dpl, 1, \ (unsigned)(lim) >> 28, 0, 0, 1, 1, \ (unsigned) (base) >> 24 \ } #define SEGTSS(type, base, lim, dpl) \ (struct segdesc) { \ (lim) & 0xffff, (base) & 0xffff, \ ((base) >> 16) & 0xff, type, 0, dpl, 1, \ (unsigned) (lim) >> 16, 0, 0, 1, 0, \ (unsigned) (base) >> 24 \ } /* task state segment format (as described by the Pentium architecture book) */ struct taskstate { uint32_t ts_link; // old ts selector uintptr_t ts_esp0; // stack pointers and segment selectors uint16_t ts_ss0; // after an increase in privilege level uint16_t ts_padding1; uintptr_t ts_esp1; uint16_t ts_ss1; uint16_t ts_padding2; uintptr_t ts_esp2; uint16_t ts_ss2; uint16_t ts_padding3; uintptr_t ts_cr3; // page directory base uintptr_t ts_eip; // saved state from last task switch uint32_t ts_eflags; uint32_t ts_eax; // more saved state (registers) uint32_t ts_ecx; uint32_t ts_edx; uint32_t ts_ebx; uintptr_t ts_esp; uintptr_t ts_ebp; uint32_t ts_esi; uint32_t ts_edi; uint16_t ts_es; // even more saved state (segment selectors) uint16_t ts_padding4; uint16_t ts_cs; uint16_t ts_padding5; uint16_t ts_ss; uint16_t ts_padding6; uint16_t ts_ds; uint16_t ts_padding7; uint16_t ts_fs; uint16_t ts_padding8; uint16_t ts_gs; uint16_t ts_padding9; uint16_t ts_ldt; uint16_t ts_padding10; uint16_t ts_t; // trap on task switch uint16_t ts_iomb; // i/o map base address } __attribute__((packed)); #endif /* !__ASSEMBLER__ */ // A linear address 'la' has a three-part structure as follows: // // +--------10------+-------10-------+---------12----------+ // | Page Directory | Page Table | Offset within Page | // | Index | Index | | // +----------------+----------------+---------------------+ // \--- PDX(la) --/ \--- PTX(la) --/ \---- PGOFF(la) ----/ // \----------- PPN(la) -----------/ // // The PDX, PTX, PGOFF, and PPN macros decompose linear addresses as shown. // To construct a linear address la from PDX(la), PTX(la), and PGOFF(la), // use PGADDR(PDX(la), PTX(la), PGOFF(la)). // page directory index #define PDX(la) ((((uintptr_t)(la)) >> PDXSHIFT) & 0x3FF) // page table index #define PTX(la) ((((uintptr_t)(la)) >> PTXSHIFT) & 0x3FF) // page number field of address #define PPN(la) (((uintptr_t)(la)) >> PTXSHIFT) // offset in page #define PGOFF(la) (((uintptr_t)(la)) & 0xFFF) // construct linear address from indexes and offset #define PGADDR(d, t, o) ((uintptr_t)((d) << PDXSHIFT | (t) << PTXSHIFT | (o))) // address in page table or page directory entry #define PTE_ADDR(pte) ((uintptr_t)(pte) & ~0xFFF) #define PDE_ADDR(pde) PTE_ADDR(pde) /* page directory and page table constants */ #define NPDEENTRY 1024 // page directory entries per page directory #define NPTEENTRY 1024 // page table entries per page table #define PGSIZE 4096 // bytes mapped by a page #define PGSHIFT 12 // log2(PGSIZE) #define PTSIZE (PGSIZE * NPTEENTRY) // bytes mapped by a page directory entry #define PTSHIFT 22 // log2(PTSIZE) #define PTXSHIFT 12 // offset of PTX in a linear address #define PDXSHIFT 22 // offset of PDX in a linear address /* page table/directory entry flags */ #define PTE_P 0x001 // Present #define PTE_W 0x002 // Writeable #define PTE_U 0x004 // User #define PTE_PWT 0x008 // Write-Through #define PTE_PCD 0x010 // Cache-Disable #define PTE_A 0x020 // Accessed #define PTE_D 0x040 // Dirty #define PTE_PS 0x080 // Page Size #define PTE_MBZ 0x180 // Bits must be zero #define PTE_AVAIL 0xE00 // Available for software use // The PTE_AVAIL bits aren't used by the kernel or interpreted by the // hardware, so user processes are allowed to set them arbitrarily. #define PTE_USER (PTE_U | PTE_W | PTE_P) /* Control Register flags */ #define CR0_PE 0x00000001 // Protection Enable #define CR0_MP 0x00000002 // Monitor coProcessor #define CR0_EM 0x00000004 // Emulation #define CR0_TS 0x00000008 // Task Switched #define CR0_ET 0x00000010 // Extension Type #define CR0_NE 0x00000020 // Numeric Errror #define CR0_WP 0x00010000 // Write Protect #define CR0_AM 0x00040000 // Alignment Mask #define CR0_NW 0x20000000 // Not Writethrough #define CR0_CD 0x40000000 // Cache Disable #define CR0_PG 0x80000000 // Paging #define CR4_PCE 0x00000100 // Performance counter enable #define CR4_MCE 0x00000040 // Machine Check Enable #define CR4_PSE 0x00000010 // Page Size Extensions #define CR4_DE 0x00000008 // Debugging Extensions #define CR4_TSD 0x00000004 // Time Stamp Disable #define CR4_PVI 0x00000002 // Protected-Mode Virtual Interrupts #define CR4_VME 0x00000001 // V86 Mode Extensions #endif /* !__KERN_MM_MMU_H__ */