
1

Operating Systems

 Lecture 3
 Physical Memory Management

IIIS & CS
Tsinghua University

Acknowledgement:
materials from Dr. Zhang Yong Guang in MSRA,
And from http://williamstallings.com/OS/OS5e.html , http://www.os-book.com

2

Review

 Dual Mode Operation
 What is an Interrupt/Exception/System Call?
 The difference of Interrupt/Exception/System Call
 X86 related

 How to build IDT
 The hardware processing when INT happens
 The software processing when INT happens
 The system call processing (non-privilege(user) mode

/privilege(supervisor) mode)
 The different stacks in different privilege mode

3

Review: Dual-mode operation

 Why do we have “user mode” and “kernel mode”?
 Problem: Would you trust any users to … read and

write memory, manage resource, access I/O, …?
 Solution: dual mode operation
 CPU has a “mode” when it is executing an instruction
 “User Mode”: can only perform a restricted set of operation

(applications)
 “Kernel Mode”: can do anything (OS kernel)

4

From “User Mode” to “Kernel Mode”

 Interrupt: hardware device requests OS service
 CPU interrupts current execution and jumps to interrupt handler, and

returns when done
 None of this is visible to user program

 Exceptions: user program acts illegally
 CPU executes exception handlers
 May cause abnormal execution flow (such as terminated)

 System calls: user program requests OS service
 User program execute a trap instruction
 OS identifies the type of service and parameters, and executes the

requested service
 OS returns to user program when done
 This appears as a function call to the user program

5

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

6

Brief Introduction to Computer Architecture

Components of any
Computer

CPU Memory Devices
(I/O)

bus

Program
executing here

Program and data
reside here when

executing

MMU

Cache

Registers

ALU
Controlle
r

Intel® 64 and IA-32 Architectures Software Developer Manuals

7

Memory Hierarchy

slow

fastest

fast

faster

memory
latency

Today’s
example

3.6GHz

1.3GHz

5ms
(seek time)

Hardware
(MMU)

CPU

L2 cache

Main Memory

Disk (virtual memory)

swapping/paging

L1 cache

microprocessor

cache miss/fill

OS

8

Modern Memory Management Paradigm

Abstraction
 Logical address space

Protection
 Isolation

Programming models
 Shared memory

P1

0

(-1)U

P2 P3 P4

OS kernel

Main memory Disk (virtual memory)

Physical space
Logical (virtual) space

MMU

9

OS Memory Models

Different ways to manage memory in an OS
 Program relocation
 Segmentation
 Paging
 Virtual memory
 Mostly (e.g., Linux): demand paging virtual memory

Implementation highly hardware dependent
 Must know memory architecture
 MMU (Memory Management Unit): hardware components

responsible for handling memory accesses requested by the CPU

10

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

11

Physical address space — The address space
supported by the hardware

 Starting at address 0, going to address MAXsys

Logical address space — A process’s view of its
own memory

 Starting at address 0, going to address MAXprog

Program
P

0

MAXsys

0

MAXprog

movl %eax, $0xfffa620e
But where do addresses come from?

Address Space & Address Generation

address space

12

Address Space & Address Generation

• The compilation pipeline

prog P
 :
 :
 foo()
 :
 :
end P

P:
 :
push ...
inc SP, x
jmp _foo
 :
foo: ...

 :
push ...
inc SP, 4
jmp 75
 :
 ...

0

75

1100

1175

Library
Routines

1000

175

Library
Routines

0

100

Compilation Assembly Linking Loading

 :
 :
 :
jmp 1175
 :
 ...

 :
 :
 :
jmp 175
 :
 ...

(program relocation)

Address Generation

13

Compile time
 If memory location known a priori
 Must recompile code if starting location changes

Load time
 Compiler must generate relocatable code if memory location is not

known at compile time
 Absolute addresses generated at load time

Execution time
 The process can be moved during its execution
 Need hardware support for address translation

Address Generation Time

Address Space & Address Generation

14

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

15

Address Space & Address Generation

 Relocate logical addresses to physical at run time
 While we are relocating, also bounds check addresses for

safety.
 Require hardware support (MMU)
 Basic component
 Address translation with two registers: BASE and LIMIT

Program Relocation

16

0

MAXsys

Program

Program Ps
Logical addressspace

0

MAXprog
1000

1500
CPU +

1000

BASE
Register

Logical
Addresses ≤

500

LIMIT
Register

MEMORY
EXCEPTION

Physical
Addresses

yes

no

Instructions

P’s
physicaladd
ressspace

Contiguous Memory Allocation

Address Translation

17

 Free memory cannot be utilized
 External fragmentation
 Unused memory between units of allocation

 Internal fragmentation
 Unused memory within a unit of allocation

0

MAX

Program
R’s PAS

Program
Q’s

PAS

Execution Stack

Program Code(“text”)

Data

Execution Stack

Contiguous Memory Allocation

The Fragmentation Problem

18

Simple memory management approach:
 Allocate a partition when a process is admitted into

the system
 Allocate a contiguous memory partition to the

process

P5

0

MAX

Program
P2

Program
P3

Program
P1

Program
P4

OS keeps track of...
Full-blocks
Empty-blocks (“holes”)

Allocation strategies
First-fit
Best-fit
Worst-fit

Contiguous Memory Allocation

Dynamic Allocation of Partitions

19

Contiguous Memory Allocation

 To allocate n bytes, use the
first available free block such
that the block size is larger
than n.

To allocate 400 bytes,
we use the 1st free block
available

500 bytes

1K bytes

2K bytes 2K bytes

500 bytes

FreeBlock

First Fit Allocation

20

Contiguous Memory Allocation

Simplicity of implementation
Requires:

 Free block list sorted by address
 Allocation requires a search for a suitable partition
 De-allocation requires a check to see if the freed partition could be

merged with adjacent free partitions (if any)

Advantages
 Simple
 Tends to produce larger

free blocks toward the end
of the address space

Disadvantages
 External fragmentation
 Uncertainty

Rationale & Implementation

21

Contiguous Memory Allocation

To allocate n bytes, use the
smallest available free block
such that the block size is
larger than n.

To allocate 400 bytes,
we use the 3rd free block
available (smallest) 500 bytes

1K bytes

2K bytes

1K bytes

2K bytes

Best Fit Allocation

22

Contiguous Memory Allocation

To avoid fragmenting big free blocks
To minimize the size of external fragments produced
Requires:

 Free block list sorted by size
 Allocation requires search for a suitable partition
 De-allocation requires search + merge with adjacent free partitions, if any

Advantages
 Works well when most

allocations are of small
size

 Relatively simple

Disadvantages
 External fragmentation
 Slow de-allocation
 Tends to produce many

useless tiny fragments (not
really great)

Rationale & Implementation

23

Contiguous Memory Allocation

To allocate n bytes, use the
largest available free block
such that the block size is
larger than n.

To allocate 400 bytes,
we use the 2nd free block
available (largest)

500 bytes

1K bytes

2K bytes

1K bytes

Worst Fit Allocation

24

Contiguous Memory Allocation

To avoid having too many tiny fragments
Requires:

 Free block list sorted by size
 Allocation is fast (get the largest partition)
 De-allocation requires merge with adjacent free partitions, if any,

and then adjusting the free block list

Advantages
 Works best if allocations

are of medium sizes

Disadvantages
 Slow de-allocation
 External fragmentation
 Tends to break large free

blocks such that large
partitions cannot be allocated

Rationale & Implementation

25

Contiguous Memory Allocation

Relocate programs to coalesce holes
Require all programs to be dynamically

relocatable
Issues

 When to relocate?
 Overhead

0

MAX

Program
P2

Program
P3

Program
P1

Program
P4

De-fragmentation by Compaction

26

Contiguous Memory Allocation

Preempt processes & reclaim their memory

Suspended

suspended
queue

ready
queue

I/O queues

Waiting

RunningReady

?

Issue: which process(es) to swap?

De-fragmentation by Swapping

27

Contiguous Memory Allocation

Schematic View of Swapping

28

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

29

Non-contiguous Allocation : Segmentation

Previously,
 Physical memory allocated to a process is contiguous
 Poor memory utilization
 Suffers from external fragmentation

Noncontiguous allocation
 Physical address space of a process is noncontiguous
 Better memory utilization and management
 Allow sharing of common blocks (code, data, library, etc.)
 Support dynamic loading and dynamic linking

Two schemes: segmentation and paging

30

Routine is not loaded until it is called
Better memory-space utilization; unused routine is never

loaded
Useful when large amounts of code are needed to handle

infrequently occurring cases
Most OS allows user programs to do dynamic loading of

components (relocatable object code)
Some OS supports loadable kernel modules

Dynamic Loading

Non-contiguous Allocation : Segmentation

31

Linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate memory-

resident library routine
 Stub replaces itself with the address of the routine, and executes

the routine
 Operating system needed to check if routine is in processes’

memory address

Dynamic linking is particularly useful for libraries
 Better known as shared libraries

Dynamic linking in ucore

Dynamic Linking

Non-contiguous Allocation : Segmentation

32

A program is a collection of
segments, such as
 Main program
 Subroutines
 Stack
 Symbols
 Data
 Common libraries
 Common blocks

Purpose: enable finer grain
isolation and sharing

Segmentation

Non-contiguous Allocation : Segmentation

33

0

2n-1

0

2n1-1 0

0

0

2n2-1

2n3-1

2n4-1

0

2n6-1
Libraries

2n5-1
0

Program
Data

Program
Text

Heap

Run-Time
Stack

Program
Text

Program
Data

Run-Time
Stack

Heap

User
Code

Separating into Multiple Address Spaces

Non-contiguous Allocation : Segmentation

34

New concept: A segment — a memory “object”
 A logical address space

A process now addresses objects —a pair (s, addr)
 s — segment number
 addr — an offset within an object

Segment + Address register scheme

s addr

Single address scheme

n10 0n2 0

s

n

addr

Non-contiguous Allocation : Segmentation

Segmentation Schemes

35

1

3

2

4

1

4

2

3

logical space physical memory space

MMU
with

segmentation
support

Logical View of Segmentation

Non-contiguous Allocation: Segmentation

36
0

Program

1000

1500

+

1000 Base
Register

Logical
Addresses

≤

500Limit
Register

MEMORY
EXCEPTION

Physical
Memory

yes

no P’s
Segment

Segment Table

s

CPU

019 910

s o

Program
P

base limit

STBR

Segment table (in cache)
STBR: Segment Table Base Register

GDT

GDTR

MMU

Selector

Offset

Descriptor

Segmentation Hardware Architecture

Non-contiguous Allocation: Segmentation

37

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

38

Non-contiguous Allocation : Paging

Divide physical memory into fixed-sized frames
 Size is power of 2, e.g., 512, 4096, 8192

Divide logical address space into same size pages
To run a program of size n pages, find n free frames and

load program
Set up a page table to translate logical to physical addresses

(pages to frames)
Frame/page: basic units of memory allocation

OS keep track of all free frames
Same-sized frame eliminates external fragmentation

39

Physical memory partitioned into equal
sized frames

addr:

f o

1SF+S

A memory address is a pair (f, o)
f — frame number (total 2F frames)
o — frame offset (2S bytes/frames)
Physical address = 2S f + o

(0,0)

(2F-1,2S-1)

(f,o)

f

o

Physical
Memory

Non-contiguous Allocation : Paging

Frames

40

Example: A 16-bit address space with 9-bit
(512 byte) page frames

 Addressing location (3, 6) = 1542

0
19

addr:
16

111 0 10000000000

3 6

3*512+6=1542

10

(0,0)

(3,6)

f

o

Physical
Memory

1542

0

Non-contiguous Allocation : Paging
Frame Example

41

A process’s logical address space is
partitioned into equal sized pages

 |page| = |frame|

p o

addr:
1SP+S

A logical address is a pair (p, o)
p — page number (2P pages)
o — page offset (2S bytes/pages)
Virtual address = 2S p + o

(0,0)

2n-1 =
(2P-1, 2S-1)

(p,o)

p

o
Logical
Address
Space

Non-contiguous Allocation : Paging

Pages

42

Non-contiguous Allocation : Paging

Pages map to frames
Pages are contiguous ... but are

arbitrarily located in physical memory
Not all pages mapped at all times

Logical
Address
Space

(p1,o1)

(p2,o2)
Physical
Memory

(f1,o1)

(f2,o2)

Paging Model

43

A page table maps logical
pages to physical frames

Page Table

CPU

(p,o)

p

P’s
Logical
Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical
Addresses

Program
P

Logical
Addresses

f

Non-contiguous Allocation : Paging

Page Table Base
Register CR3

Paging Hardware Architecture

44

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

45

Contents:
 Flags — dirty bit, resident

bit, clock/reference bit
 Frame number

1 0

Page Table

p

120 910

p o

116 910

f o

Physical
Addresses

Logical
Addresses

f0PTBR

CPU

+

One table per process
 Part of process’s state
 PTBR: Page Table Base Register

Page Table Structure

Non-contiguous Allocation : Page Table

46

A system with 16-bit addresses
 32 KB of physical memory
 1024 byte pages

15

P’s
Logical
Address
Space

(3,1023)
(4,0)

Physical
Memory

(4,1023)

(0,0)

1 1 0 0 1 0 0

CPU

Page Table

1011

p o

15 1011

f o

Physical
Addresses

Logical
Addresses

0 0 0 0 0 0 01
0

11

Example Address Translation

Non-contiguous Allocation : Page Table

47

Problem — Requires 2 memory references!
 One access to get the page table entry
 One access to get the data

Page table can be very large
 For a machine with 64-bit addresses and 1024 byte pages, what is

the size of a page table?

What to do? Hint: most computing problems are solved by
some form of…

 Caching
 Indirection

Paging Performance Issue

Non-contiguous Allocation : Page Table

48

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

49

Cache recently accessed page-to-frame translations
 TLB implemented in associative memory for fast access
 For TLB hit, physical page number obtained in 1 cycle
 For TLB miss, translation is updated in TLB

Page Table

120 910

p o
116 910

f o
Physical

Addresses

Logical
Addresses

CPU

TLB

f

Key Value

p

p

f

?

X

Translation Look-aside Buffer (TLB)

Non-contiguous Allocation : Page Table

50

Add additional levels of
indirection to the page table
by sub-dividing page number
into k parts

 Create a “tree” of page tables

Third-Level
Page Tables

p2 o
Logical Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

Multi-level Paging

Non-contiguous Allocation : Page Table

51

Second-Level
Page Table

120 1016

p1 o
116 10

f o
Physical

Addresses
Logical

Addresses

CPU

First-Level
Page Table

page table

p2

f

p1

PTBR

p2

++

Memory

CR3

Example: Two-level Paging

Non-contiguous Allocation : Page Table

52

With large address spaces (64-bits) forward mapped page
tables become cumbersome.

 E.g. 5 levels of tables.

Instead of making tables proportional to size of logical
address space, make them proportional to the size of physical
address space.

 Logical (virtual) address space is growing faster than physical.

The Problem of Large Address Spaces

Non-contiguous Allocation : Page Table

53

Each frame is associated with a register containing
 Residence bit: whether or not the frame is occupied
 Occupier: page number of the page occupying frame
 Protection bits

Page registers: an example
 Physical memory size: 16 MB
 Page size: 4096 bytes
 Number of frames: 4096
 Space used for page registers (assuming 8 bytes/register): 32 Kbytes
 Percentage overhead introduced by page registers: 0.2%
 Size of virtual memory: irrelevant

Using Page Registers (aka Inverted Page Tables)

Non-contiguous Allocation : Page Table

54

Advantages:
 Size of translation table occupies a very small fraction of

physical memory
 Size of translation table is independent of logical address space

size

Disadvantages:
 We have reverse of the information that we need….
 How do we perform translation ?
 Search the translation table for the desired page number

Page Registers Tradeoffs

Non-contiguous Allocation : Page Table

55

If the number of frames is small, the page registers can
be placed in an associative memory

Logical page number looked up in associative memory
 Hit: frame number is extracted
 Miss: results in page fault

Limitations:
 Large associative memories are expensive

 Difficult to make large and accessible in a single cycle.
 They consume a lot of power

Searching for a Page in Inverted Page Tables

Non-contiguous Allocation : Page Table

56

Hash page numbers to find corresponding frame numbers in
a “frame” table with one entry per frame

Page i is placed in slot f(i) where f is an agreed-upon hash
function

To lookup page i, perform the following:
 Compute f(i) and use it as an index into the table of page registers
 Extract the corresponding page register
 Check if the register tag contains i, if so, we have a hit
 Otherwise, we have a miss

Hashing Large Inverted Page Tables

Non-contiguous Allocation : Page Table

57

h(PID, p)

120 9

p o

116 9

f o
Physical

Addresses
Logical

Addresses

PTBR

CPU

Hash
Table

PID

Inverted Page Table

1 0 page 0

Memory

0

fmax– 1
fmax– 2

running
PID

+

Hashed Inverted Page Table Architecture

Non-contiguous Allocation : Page Table

58

Outline

 Computer Arch/Memory Hierarchy
 Address Space & Address Generation
 Contiguous Memory Allocation
 Dynamic Allocation of Partitions
 Non-Contiguous Memory Allocation
 Segmentation
 Paging
 Page Table

• Translation Look-aside Buffer (TLB)
• Multi-Level Page Table
• Inverted Page Table

 Paged Segmentation Model

59

Paged Segmentation Model

Segmentation has advantages for protection, paging has
advantages for memory utilization and optimizing transfer to
backing store.

Can we combine segmentation and paging?

60

Paged Segmentation Hardware Architecture

Add an additional level of indirection to page table

Segment S’s
Page Table

019 915

s o

0
11 9

f o
Physical

Addresses
Logical

Addresses

CPU

Process P’s
Segment Table

page table
p

f

s
STBR

p

++

Memory

61

Sharing in Paged-Segmented Systems

If segments are paged then page tables are automatically
shared

 Processes need only agree on a number for the shared segment

Shared Segment
Page Table

jmp (p,o)

57

(p,o)

f = 0
f = 2

f = 1
A’s Segment Table

s
shared seg
heap seg
code seg

B’s Segment Table

s
shared seg
heap seg
code seg

Physical Memory

62

This week’s Work

Lab1 should be finished!

