
1

Operating Systems

 Department of Computer Science & Technology
 Tsinghua University

 Lecture 13: File System

2

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

3

Basic Concepts

File System & File
File Descriptor
Directory
File Aliasing
Types of File System

4

File System and File

File system: an OS abstraction for using persistent storage
Π Organizing, manipulating, navigating, accessing, and retrieving

data on the persistent storage

Most computer systems have file systems
Π PCs, servers, laptops
Π iPod, Tivo/set-top-box, cellphones/PDAs
Π Google is made possible by a file system

File: an OS abstraction for a unit of related data in the file
system

5

File System Functionality

Allocate disk storage to files
Π Managing file blocks (which blocks belong to which file)
Π Managing free space (which blocks are free)
Π Allocation algorithms (policies)

Manage the collection of files
Π Locate files and their contents
Π Naming: interface to find files by name
Π Most common: hierarchical file system
Π File system type (different ways to organize files)

Provide convenience and features
Π Protection: layers to keep data secure
Π Reliability/Durability: Keeping of files durable despite crashes,

media failures, attacks, etc

6

File and Blocks

File attributes
Π Name, type, location, size, protection, creator, creation time, last-

modified-time, …

File header
Π On-storage metadata storing information on each file
Π Storing the file attributes
Π Tracking which blocks of the storage belong at which offsets

within the logical file structure

7

Basic Concepts

File System & File
File Descriptor
Directory
File Aliasing
Types of File System

8

Open File and File Descriptor

File use model
Π User program must “open” a file before use

f = open(name, flag);
…
… = read(f, …);
…
close(f);

Kernel keeps track of open files for each process
Π OS maintains an open file table per process
Π An open file descriptor is an index into this table

open file table

file descriptor

9

File Descriptor

Several pieces of data are needed to manage open files:
Π File pointer: pointer to last read/write location, per process that

has the file open
Π File-open count: counter of number of times a file is open – to

allow removal of data from open-file table when last processes
closes it

Π Disk location of the file: cache of data access information
Π Access rights: per-process access mode information

10

User vs System View of a File

User’s view:
Π Durable data structures

At system call interface
Π Collection of bytes (UNIX)
Π Doesn’t matter to system what kind of data structures you want to

store on disk!

OS’s internal view
Π Collection of blocks (a block is a logical transfer unit, while a

sector is the physical transfer unit)
Π Block size 鑗 sector size; in UNIX, block size is 4KB

11

Translating from User to System View

What happens if user says: give me bytes 2—12?
Π Fetch block corresponding to those bytes
Π Return just the correct portion of the block

What about: write bytes 2—12?
Π Fetch block
Π Modify portion
Π Write out Block

Everything inside File System is in whole size blocks
Π For example, getc(), putc() 钂 buffers something like 4096 bytes,

even if interface is one byte at a time

12

Access Patterns

How do users access files?
Π Need to know type of access patterns user is likely to throw at system

Sequential access: bytes read in order
Π Almost all file access are of this flavor

Random Access: read/write element out of middle
Π Less frequent, but still important. For example, virtual memory

backing file: page of memory stored in file
Π Want this to be fast – don’t want to have to read all bytes to get to the

middle of the file
Content-based Access: by characteristics

Π Many systems don’t provide this; instead, databases are built on top
of disk access to index content (requires efficient random access)

13

Example of Index and Relative Files

14

File Internal Structure

No structure
Π Sequence of words, bytes

Simple record structure
Π Lines
Π Fixed length
Π Variable length

Complex structures
Π Formatted document (e.g., MS Word, PDF)
Π Executable file
Π …

15

File Sharing and Access Control

Sharing of files on multi-user systems is desirable
Access control

Π Who can have what type accesses to what files
Π Types of access: read, write, execute, delete, list, etc.

Per-file access control list (ACL)
Π <entity, permission>

Unix model
Π <user|group|world, read|write|execute>
Π User IDs identify users, allowing permissions and protections to be

per-user
Π Group IDs allow users to be in groups, permitting group access

rights

16

Consistency Semantics

Specify how multiple users/clients are to access a shared
file simultaneously

Π Similar to process synchronization algorithms
Π Less complex due to disk I/O and network latency

Unix file system (UFS) semantics
Π Writes to an open file are visible immediately to other users of the

same open file
Π Sharing file pointer to allow multiple users to read and write

concurrently

Session semantics
Π Writes only visible after the file is closed

Locking
Π Provided by some OS and file systems

17

Basic Concepts

File System & File
File Descriptor
Directory
File Aliasing
Types of File System

18

Hierarchical File System

Files are organized in directories
Directory is a kind of special files

Π Each contains a <name, pointer to file header> table

Tree structure for directories and files
Π Some early file systems are flat (single-level directory)

Hierarchical name space

/spell/mail/prt/first

/programs/p/list

19

Operations Performed on Directory

Typical operations
Π Search for a file
Π Create a file
Π Delete a file
Π List a directory
Π Rename a file
Π Traverse a path in the file system

OS should only allow kernel mode to modify a directory
Π Ensure integrity of the mapping
Π Application programs can read directory (e.g., ls)

20

Directory Implementation

Linear list of file names with pointer to the data blocks
Π simple to program
Π time-consuming to execute

Hash Table – linear list with hash data structure
Π decreases directory search time
Π collisions – situations where two file names hash to the same

location
Π fixed size

21

Basic Concepts

File System & File
File Descriptor
Directory
File Aliasing
Types of File System

22

File Aliasing

Two or more different names referring same file

Hard Links: multiple directory entries point at the same file
Soft Links: “shortcut” pointers to other files

Π Implemented by storing the logical name of actual file

/dict/count
/spell/count

/dict/w/list
/dict/all
/spell/words/list

23

The Dangling Pointer Problem in File Aliasing

What if one delete the file pointed by one name
Π The name alias becomes “dangling pointer”

Backpointers solution:
Π Each file has a list of backpointers, so we can delete all pointers
Π Backpointers using a daisy chain organization

Add a level of indirection: directory entry data structure
Π Link – another name (pointer) to an existing file
Π Resolve the link – follow pointer to locate the file

24

Cycles in Directory

How do we guarantee no cycles?
Π Allow only links to file not subdirectories
Π Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

More practical
Π Limit the number of directories that a path can traverse

/avi/book/avi/book/a
vi/book/avi/book/avi
/book/avi/book/avi/b
ook/avi/book/avi/…

25

Name Resolution: Path Traversal

Name resolution: the process of converting a logical name
into a physical resource (like a file)

Π In file system: file name (path) to actual file
Π Traverse succession of directories until reach target file

Example: resolving “/bin/ls”
Π Read in file header for root (fixed spot on disk)
Π Read in data block for root; search for “bin” entry
Π Read in file header for “bin”
Π Read in data block for “bin”; search for “ls”
Π Read in file header for “ls”

Present working directory (PWD)
Π Per-process pointer to a directory for resolving file name
Π Allows user to specify relative path instead of absolute path (say

PWD=“/bin” can resolve “ls”)

26

File System Mounting

A file system must be mounted before it can be accessed
A unmounted file system is mounted at a mount point

unmounted
file system

mount
point

27

Basic Concepts

File System & File
File Descriptor
Directory
File Aliasing
Types of File System

28

Types of File Systems

Disk file systems
Π Files on a data storage device, like disk.
Π Example: FAT, NTFS, ext2/3, ISO9660, etc.

Database file systems
Π Files are addressable (resolution) by characteristics
Π Example: WinFS

Transactional file systems
Π Changes/events to file systems are logged
Π Example: journaling file system

Network/distributed file systems
Π Example: NFS, SMB, AFS, GFS

Special/virtual file systems

http://en.wikipedia.org/wiki/Comparison_of_file_systems

29

Network/Distributed File Systems

Files may be shared across a network
Π Files located at remote servers
Π Clients to mount remote file systems from servers
Π Standard OS file calls are translated into remote calls
Π Standard file sharing protocols: NFS for Unix, CIFS for Windows

Distributed system problems
Π Client and user-on-client identification complicated
Π For example, NFS is insecure
Π Consistency problem
Π Dealing with failure mode

Truly distributed file systems is still a research
Π Examples: Andrew File System (AFS)

30

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

31

File System Implementation in an OS

Layering structure
Π Upper layer: virtual (logical) file system
Π Lower layer: specific file system modules

Virtual File System layer

ext2 fat iso9660 nfs smb

Device I/O Network I/O

File/File System API

32

Virtual File System (VFS) Layer

Purpose
Π Abstraction for all different file system implementations

Functions
Π Provide the same file and file system interface
Π Manage all file and file system related data structures
Π Routines for efficient lookup, traverse the file system
Π Interact with specific file system modules

33

File System Basic Data Structures

Volume Control Block (Unix: “superblock”)
Π One per file system
Π Detail information about the file system
Π # of blocks, block size, free-block count/pointer, etc.

File Control Block (Unix: “vnode” or “inode”)
Π One per file
Π Detail information about the file
Π Permission, owner, size, data block locations, etc.

Directory Node (Linux: “dentry”)
Π One per directory entry (directory or file)
Π A tree data structure to encode the directory structure and tree

layout
Π Pointer to file control block, parent, list of entries, etc.

34

Abstract View

vol dir

dir dir

dir dir dir

dir

file file file file

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

35

Where are the Data Structure Stored

File system data structures
Π Volume control block (one per file system)
Π File control block (one per file)
Π Directory node (one per directory entry)

Persistently stored on the secondary storage
Π In data block(s) allocated in the storage

Loaded to memory when needed
Π Volume control block: in memory if file system is mounted
Π File control block: if the file is accessed
Π Directory node: during traversal of a file path

36

Storage View

37

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

38

Various Disk-Caching Locations

39

Data Block Caching

Data blocks are read into memory on-demand
Π To serve a read() operation
Π Read-ahead: prefetch subsequent data blocks

Data blocks are cached after used
Π Under assumption that they may be used again
Π Writes may be buffered and delayed

Two methods of caching data block
Π Normal buffer cache
Π Page cache: unified caching for data blocks and memory pages

40

Remember Demanded Paging Memory Model?

Demand paging
Π Bring a page into memory only when it is needed

Backing store
Π A page (in virtual address space) can be mapped to a location in a

file (in secondary storage)

virtual address

swap file file

OS kernel memory management

main memory

secondary storage

backing store

41

Page Cache

Page cache for file data blocks
Π A file data block is mapped to a page in virtual memory
Π File read/write op is translated to memory access
Π May cause page-fault and/or set the page dirty
Π Issue: page replacement – taken from processes or file page cache?

virtual address

files

OS kernel memory management

main memory

secondary storage

Page cache

42

I/O Without a Unified Buffer Cache

43

Unified Buffer Cache

A unified buffer cache uses the same page cache to cache
both memory-mapped pages and ordinary file system I/O.

44

Outline（part2）

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

45

File System Data Structures for Open Files

Open file descriptor
Π One per open file
Π Information about the file status
Π Directory entry, current file pointer, set of file ops, etc.

Open file tables
Π One per process
Π One system-wide
Π Each volume control block should keep a list too
Π So that it wouldn’t dismount if still open file(s)

46

Open-File Tables

vol dir

dir dir

dir dir dir

dir

file file file file

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

per-process
open-file table

system-wide
open-file table

47

Open File Locking

Provided by some operating systems and file systems
Mediates access to a file
Mandatory or advisory:

Π Mandatory – access is denied depending on locks held and
requested

Π Advisory – processes can find status of locks and decide what to
do

48

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

49

Use Pattern

Most files are small.
Π Need strong support for small files.
Π Block size can’t be too big.

Some files are very large.
Π Must allow large files (64-bit file offsets).
Π Large file access should be reasonably efficient.

50

File Allocation

How to allocate data blocks to each file
Allocation methods

Π Contiguous allocation
Π Linked allocation
Π Indexed allocation

Metrics
Π Efficiency: e.g., storage utilization (external fragmentation)
Π Performance: e.g., access speed

51

Contiguous Allocation

File header specifies starting block & length
Placement/Allocation policies

Π First-fit, best-fit, ...

u Pluses
Π Best file read

performance
Π Efficient sequential &

random access

u Minuses
Π Fragmentation!
Π Problems with file growth

鐚 Pre-allocation?
鐚 On-demand allocation?

52

Linked Allocation

Files stored as a linked list of blocks
File header contains a pointer to the first and last file
blocks

鐙 Minuses
Π Impossible to do true

random access
Π Reliability

鐚 Break one link in the chain
and...

u Pluses
Π Easy to create, grow & shrink

files
Π No fragmentation

53

Indexed Allocation

Create a non-data block for each file called the index block
Π A list of pointers to file blocks

File header contains the index block

u Pluses
Π Easy to create, grow &

shrink files
Π No fragmentation
Π Supports direct access

u Minuses
Π Overhead of storing index

when files are small
Π How to handle large files?

54

Indexed Allocation for Large Files

Linked index blocks (IB+IB+…)

Multilevel index blocks (IB*IB*…)

55

Multi-level Indexed Allocation in UNIX

56

Multi-level Indexed Allocation in UNIX

File header contains 13 pointers
Π 10 pointes to data blocks;
Π 11th pointer  indirect block;
Π 12th pointer  doubly-indirect block;
Π 13th pointer  triply-indirect block

Implications
Π Upper limit on file size
Π Blocks are allocated dynamically, files can easily expand
Π Small files are cheap
Π Allocate indirect blocks only for large files, and large files require

a lot of seek to access indirect blocks

57

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

58

Free-Space List

Keep track of all unallocated blocks in the storage
Where is free-space list stored?
What is a good data structure for free-space list?

59

Free-Space List: Bit Map

Represent the list of free blocks as a bit map:
Π 111111111111111001110101011101111...
Π If bit i = 0 then block i is free, otherwise it is allocated

Simple to use but this can be a big vector:
Π 160GB disk -> 40M blocks -> 5MB worth of bits
Π However, if free sectors are uniformly distributed across the disk

then the expected number of bits that must be scanned before
finding a “0” is n/r, where

鐚 n = total number of blocks on the disk
鐚 r = number of free blocks

Π If a disk is 90% full, then the average number of bits to be scanned
is 10, independent of the size of the disk

60

Free-Space List: Bit Map (Cont.)‏

Need to protect:
Π Pointer to free list
Π Bit map

鐚Must be kept on disk
鐚Copy in memory and disk may differ.
鐚Cannot allow for block[i] to have a

situation where bit[i] = 1 in memory and
bit[i] = 0 on disk.

Π Solution:

鐚Set bit[i] = 1 in disk.
鐚Allocate block[i]
鐚Set bit[i] = 1 in memory ？

61

Other Free List Representations

linked lists

Grouped lists

62

Outline

Basic Concepts
Virtual File System
Data Block Caching
Data Structures for Open
Files
File Allocation
Free-Space List
Management of Multiple
Disks – RAID

63

Disk Partitioning for Performance

Disks are typically partitioned to minimize the largest
possible seek time

Π A partition is a collection of cylinders
Π Each partition is a logically separate disk

64

A Typical Disk File-System Organization

Partition: a division of hard disk to apply OS-specific
formatting
Volume: a single accessible storage area with a single
instance of a filesystem

Π Typically resident on a single partition of a hard disk

65

Management of Multiple Disks

Use multiple parallel disks to increase
Π Throughput (through parallelism)
Π Reliability and availability (through redundancy)

RAID - Redundant Array of Inexpensive Disks
Π A variety of disk-organization techniques
Π RAID levels: different RAID scheme (e.g., RAID-0, RAID-1,

RAID-5)

Implementation
Π In OS kernel: storage/volume management
Π In hardware RAID controller (I/O)

66

RAID-0: Disk Striping for Throughput

Blocks broken into sub-blocks that are stored on separate
disks

Π similar to memory interleaving

Provides for higher disk bandwidth through a larger
effective block size

3

 8 9 10 11
12 13 14 15
 0 1 2 3

 8 9 10 11
12 13 14 15
 0 1 2 3

OS disk
block

 8 9 10 11

Physical disk blocks

21

12 13 14 15 0 1 2 3

67

Raid-1: Disk Mirroring for Reliability

Reliability is increased exponentially
Read performance goes up linearly

Π Write to both disks, read from either.

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

xx

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

Primary
disk

Mirror
disk

68

RAID-4: Parity Disk for Reliability

Block-level striping with a dedicated parity disk
Π Allows one to recover from the crash of any one disk
Π Example: storing 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3

Disk 1 Disk 2 Disk 3 Disk 4 Parity Disk

1 1 0 0
1 0 0 0
0 1 0 0

1 1 0 0
1 0 0 0
0 1 0 0

xxxxx

1 0 0 0
1 0 0 1
1 0 1 0

1 0 0 0
1 0 0 1
1 0 1 0

0 0 0 1
0 0 1 0
0 0 1 1

0 0 0 1
0 0 1 0
0 0 1 1

1 1 1 0
1 1 1 1
0 0 0 0

1 1 1 0
1 1 1 1
0 0 0 0

1 0 1 1
1 1 0 0
1 1 0 1

1 0 1 1
1 1 0 0
1 1 0 1

69

RAID-5: Block-interleaved Distributed Parity

Disk 1

x x

Disk 2 Disk 3

x

Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity

Block
x+1

Parity

a
b
c

d
e
f

g
h
i

j
k
l

m
n
o

Block
x+2

Parity

p
q
r

s
t
u

v
w
x

y
z
aa

bb
cc
dd

Block
x+3

Parity

ee
ff
gg

hh
ii
jj

Block
x

Block
x+1

Block
x+2

Block
x+3

xx

70

321

Bit-wise vs Block-wise Disk Striping

Striping and parity can be done byte-by-byte or bit-by-bit
Π RAID-0/4/5: block-wise
Π RAID-3: bit-wise

Example: storing bit-string 101 in RAID-3 system

1 x x x x
x x x x x
x x x x x

1 x x x x
x x x x x
x x x x x

0 x x x x
x x x x x
x x x x x

0 x x x x
x x x x x
x x x x x

1 x x x x
x x x x x
x x x x x

1 x x x x
x x x x x
x x x x x

71

Tolerating Two Disk Failures

RAID-5: single parity block per striping data block
Π tolerating one disk failure

RAID-6: two redundancy blocks
Π With a special coding scheme
Π tolerating two disk failures

72

Nested RAID Levels

RAID 0+1

RAID 1+0

RAID-0 RAID-0
RAID-1

RAID-1 RAID-1
RAID-0

