
1

Operating Systems

IIIS & CS
Tsinghua University

Introduction

Acknowledgement:
materials from Dr. Zhang Yong Guang in MSRA,
And from http://williamstallings.com/OS/OS5e.html , http://www.os-book.com

2

Outline

• Course Introduction
• Contact Information
• Why study OS?
• Purpose of This Course
• Reference Textbooks
• Course Overview
• Course Scheduling
• Grading & Prerequisites
• Words to Remember

• What is an Operating System?
• Evolution of Operating Systems
• Operating-System Structures

3

Contact Information

Instructor: CHEN, Yu 陈渝

Office: Room 3-124/106, FIT Building

Email: yuchen@tsinghua.edu.cn , chyyuu@gmail.com

Wiki : http://os.cs.tsinghua.edu.cn/oscourse/OS2014

TA:
茅俊杰 eternal.n08@gmail.com

maillist: https://piazza.com/tsinghua.edu.cn/spring2014/30240243/home

https://groups.google.com/group/oscourse?hl=en

4

Contact Information

Instructor: Yong XIANG (向勇)

Office: Room 410, Section 9, East Main Building

Tel&email: 6278 5609, xyongcn@gmail.com

Wiki: http://os.cs.tsinghua.edu.cn/oscourse/OS2014

TA: 曹睿东 crdfrank@gmail.com

maillist: https://piazza.com/tsinghua.edu.cn/spring2014/30240243/home

https://groups.google.com/group/oscourse?hl=en

5

 The Operating System (OS) I use has already been written, and I doubt it
will be my job to write another one. For example, Windows, Linux.
Haven’t OS developers figured everything out already? What more is there
to do?
Why should I study this as an undergraduate?

Why Study OS?

OS is cool!

OS is challenging!
I want to be involved!

OS is important!

6

OS: A Corner Stone of Computer Science
Research

• Fundamental understanding of computer systems
• Driven by hardware advance and scale
• Advances in both academic and industry

OS is important

7

Where are the Research Effects

• CS departments in Top universities
• Computer industry
– Old time: Xerox (PARC), IBM, DEC (SRC), Bell

Labs
– Now: Microsoft, Google, Yahoo, IBM, HP, Sun,

Intel, VMware, Amazon, …
• Research Associations
– ACM SIGOPS
– USENIX

OS is important

8

Top Conferences on Operating System Research

• ACM Symposium on Operating Systems
Principles (SOSP)
– ACM SIGOPS
– Every two years (odd number: 1967-)
– ~20 papers

• USENIX Symposium on Operating Systems
Design and Implementation (OSDI)
– USENIX
– Every two years (even number: 1994-)
– ~20 papers

OS is important

9

The OS is really large
Windows XP is 45 million lines

The OS manages concurrency
Concurrency leads to interesting programming challenges

OS code manages raw hardware
Timing dependent behavior, undocumented behavior, HW

bugs
OS code must be efficient, low CPU, memory, disk use
OS fails machine fails

OS must fail less than user programs
OS basis of system security

OS is Challenging

10

OS is not about concurrency & trivial scheduling
algorithms

concurrency is a small part
disk scheduling is mostly irrelevant (SCSI does it for you)
process scheduling is a small topic

OS is Challenging

monitors and philosophers don’t live in OS kernels
the locking problems there are in kernels require too much background

11

OS is about: tradeoffs
time vs space
performance vs predictability
fairness vs performance (which design will work and why?)

OS is about: Hardware
how does interrupt/exception/context switch really work?
how does a TLB work and what does this mean for page tables?
if you aren’t showing any assembler code you aren’t teaching OS!

OS is Challenging

12

Capstone course - combines things from many different
courses

Programming languages
Data structures
Algorithms
Computer Architecture
Computer Science

The materials
OS concepts and principles, Source Code

The skills
OS designs and implementations

Purpose of This Course

13

Words to Remember for this Course

"I hear and I forget,
I see and I remember,
I do and I understand."
-- Chinese proverb

"Genius is 1% inspiration and 99% perspiration"
-- Thomas Edison

“Hardest, best and most fun 3rd year course!”

14

Reference Textbooks

• Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
Operating system concepts (8th Edition), John Wiley &
Sons, 2008

• William Stallings, Operating Systems-Internals and Design
Principles(7th Edition), Prentice Hall, 2011

15

Reference Textbooks(cont.)

• Solaris Internals:Solaris 10 and OpenSolaris Kernel Architecture,
2nd Edition, Richard McDougall, Jim Mauro, Prentice Hall, July
10, 2006, ISBN 0-13-148209-2

• Microsoft Windows Internals, 4th Edition, Mark E. Russinovich,
David A. Solomon, Microsoft Press, 2005，ISBN 0-7356-1917-
4

• Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet,
2005, ISBN 0-5960-0565-2

16

Course Overview

• Basic
• Interrupt&Syscall
• Memory management
• Process&Thread
• Scheduling
• Synchronization
• File system
• I/O subsystem
• Kernel Security

• Practice
• Do Labs/Projects

• Extension
• Reading & Discuss Hot Topics

17

Course Scheduling

No. Content

Lecture 1 Introduction+lab0

Lecture 2 Interrupt and System call+lab1

Lecture 3 physical Memory Management: partition+lab2: segmentation

Lecture 4 physical Memory Management: paging + lab2: paging

Lecture 5 Virtual Memory: page fault + lab3: page fault

Lecture 6 Virtual Memory: replacement algorithm + lab3: swap

Lecture 7 Memory virtualization

Lecture 8
Process&thread: process&thread states + lab4: kernel
thread

Lecture 9
Process&thread: process&thread control + lab5: fork &
exec

Lecture 10 CPU Scheduling: concept + lab6

Lecture 11 CPU Scheduling: implementation

Lecture 12 Virtualization & CPU virtualization

April 8, 2014 Mid-exam

18

Course Scheduling

No. Content

Lecture 13 Synchronization

Lecture 14 Semaphore&Monitor

Lecture 15 IPC & Deadlocks + lab7

Lecture 16 File System: concept

Lecture 17 File System: implementation + lab8

Lecture 18 I/O Subsystem: concept & disk I/O

Lecture 19 I/O Subsystem: device driver（usb）

Lecture 20 I/O virtualization

Lecture 21 Kernel Security: stack overflow

Lecture 22 Kernel Security: symbol execution

May 20, 2014 Final-exam

June 10, 2014 Project report

19

Course Scheduling

No. Content

Lab 0 Preparing

Lab 1 System boot

Lab 2 Physical memory management

Lab 3 Virtual memory management

Lab 4 Process management

Lab 5 User Process Management

Lab 6 CPU Scheduling

Lab 7 Synchronization

Lab 8 File System

20

Grading & Prerequisites

• Grading
o Labs+Homeworks: 20%
o Middle&Final Exam: 80% (midterm 30%+Final 50%)

or Course Projects
Principle ,Labs

• Prerequisites:
o Computer constitution principle (Intel 80386+)
o Data structure
o C & ASM programming

• Course requirement
o Keep your mobile phone in silent/vibrating alert
o no chat during the class

21

Course Projects

• ucore+ modularization
o Analysis the interfaces between kernel modules
o Loadable kernel module
o Loadable FAT file system
o Loadable scheduler
o Loadable memory manager
o Device Driver Environment: DDEKit

o Extented projects
o ucore+ on real board: Raspberry PI,etc.

o Other
o Optional project related to OS

• Reference course projects

22

Outline

• Course Introduction
• What is an Operating System?

• Some Operating Systems
• Operating System Definition

• Evolution of Operating Systems
• Operating-System Structures

23

Some Operating Systems

24

Some Operating Systems

25

Operating System Definition
• OS is a control program

o A piece of system software
o Controls execution of programs to prevent errors and improper

use of the computer
o Execute user programs and make solving user problems easier
o Make the computer system convenient to use

• OS is a resource allocator
o An interface between applications and hardware
o Manages all resources
o Decides between conflicting requests for efficient and fair

resource use
o Use the computer hardware in an efficient manner

• No universally accepted definition

What is an Operating System?

26

Layers of Computer System

27

Outline

• Course Introduction
• What is an Operating System?
• Evolution of Operating Systems

• Single User System
• Batch processing
• Multiprogramming
• Timesharing
• OS for PCs
• Distributed Operating Systems

• Operating-System Structures

28

Evolution of an Operating System

• Why do operating systems change?
o Key functions: hardware abstraction and coordination
o Principle: Design tradeoffs change as technology changes
o Underlying technology has changed immensely over the past

two decades !!
• Comparing computing systems from 1981 and 2014

Vital
statistic

1981 IBM personal
computer

2001 Dell OptiPlex GX150 2012 Dell XPS 8300

Price $3045 $1447 $1090

CPU 4.77-MHz 8088 933-MHz Pentium III
3.4GHz Intel Core
i7-2600

MIPS 0.33–1 MIPS 1,354 MIPS at 500 MHz
76,383 MIPS at 3.2
GHz

RAM 64KB 128MB
8GB DDR3 SDRAM
at 1333MHz

Storage 160KB floppy drive
20GB hard drive, CD-RW and
1.44MB floppy drives

1TB - 7200RPM,
SATA 3.0Gb/s

29

Evolution of an Operating System

• Single-user systems
• Batching systems
• Multi-programming systems
• Time sharing
• Personal computing: One system per user
• Distributed computing: lots of systems per user

30

Single User System (1945-1955)

OS = loader + libraries of common subroutines
Problem: low utilization of expensive components

= % utilization
Execution time

Execution time + Card reader time

31

Batch/Off-line Processing (1955-1965)

sequential vs. Batching execution of jobs

Card Reader:

CPU:

Printer:

Read Batch 1

Batch 1 Batch 2 Batch 3

Batch 2 Batch 3

Print Batch 1 Batch 2 Batch 3

Card Reader:

CPU:

Printer:

Read Job 1

Job 1 Job 2 Job 3

Job 2 Job 3

Print Job 1 Job 2 Job 3

Execute

Execute

32

Multiprogramming (1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O
Device

k: read()

k+1:

endIo() interrupt

main{

}

}

OS

read{

startIO()
waitIO()

33

Multiprogramming (1965-1980)

Keep several jobs in memory and multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 Program 2OS I/O
Device

k: read()
startIO()

interrupt

main{
read{

endio{

}schedule()

main{

k+1:

}

}schedule()

34

Timesharing (1970-)

A timer interrupt is used to multiplex CPU among jobs

Program 1 Program 2OS

k+1:
schedule{

timer
interrupt schedule{

timer
interrupt

k:

main{

} main{

}
timer

interrupt schedule{
Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

35

Operating Systems for PCs

• Personal computing systems
o Single user
o Utilization is no longer a concern
o Emphasis is on user interface and API
o Many services & features not present

• Evolution
o Initially: OS as a simple service provider

(simple libraries)
o Now: Multi-application systems with

support for coordination and communication
o Growing security issues (e.g., online

commerce, medical records)

36

Distributed Operating Systems

Typically support distributed services
Sharing of data and coordination across multiple systems

Possibly employ multiple processors
Loosely coupled v. tightly coupled systems

High availability & reliability requirements

OS
process

management

User
Program

CPU

LAN/WAN

OS
process management
memory management

User
Program

CPU

OS
file system

name services
mail services

CPU

Network

37

Outline

• Course Introduction
•What is an Operating System?
• Evolution of Operating Systems
• Operating-System Structures

• Simple Structure
• Layered Structure
• Microkernel System Structure
• Exokernel Structure

38

Simple Structure

•MS-DOS – written to provide the most
functionality in the least space (1981~1994)
o Not divided into modules
o Although MS-DOS has some structure, its

interfaces and levels of functionality are not well
separated

39

Layered Approach

• Operating system is divided into a
number of layers (levels)
o Each built on top of lower layers
o Bottom layer (layer 0), is the

hardware
o Highest (layer N) is the user interface

•With modularity, layers are
selected such that each uses
functions (operations) and services
of only lower-level layers

40

UNIX

Designed by Kenneth Thompson and
Dennis Ritchie at Bell Labs in 1972.
Designed for coding the routines of the
UNIX operating system.
“High level” systems programming
language which created the notion of a
portable operating system

K. Thompson and D. Ritchie

41

UNIX System Structure

Timer Driver Interrupt Service

Bootloader

Our Labs

42

Microkernel System Structure

•Moves as much from
the kernel into “user”
space

• Communication
takes place between
user modules using
message passing

• Benefits:
flexible/security...

• Detriments:
Performance

LPC

HAL

APP1 APPn

APP2

APP3

APP4

43

Exokernel Structure

• Overview
o let the kernel allocate the physical resources of the machine

to multiple application programs, and let each program
decide what to do with these resources.

o The program can link to an operating system library (libOS)
that implements OS abstractions.

o protected control transfer, PCT

44

Conclusions

OS/System is in trouble, but …

o It’s unjustified
• there are plenty of challenges and opportunities

o It’s dangerous
• the country will lose big time if we give up

o we can do it!
• ... at least at Tsinghua

45

Start lab #0

Today’s Work

