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Review

• Computer Arch/Memory Hierarchy
• Address Space & Address Generation
• Contiguous Memory Allocation

• Dynamic Allocation of Partitions
• Non-Contiguous Memory Allocation

• Segmentation
• Paging
• Page Table
• Paged Segmentation Model
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Outline

• Principle of Locality & Address Translation
• Goal
• Method
• Characteristics: discontinuous
• Locality
• Translation: share , exception

• Virtual Memory
• Mechanisms for Implementing VM
• Local Page Replacement
• Global Page Replacement
• Belady Phenomenon
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Memory Management Goals

• Support multiprogramming
Provide the abstraction of address space
Enforce isolation and protection
Enable new programming models like shared memory

• Manage memory resource and use them efficiently
Utilize the memory hierarchy
Better resource allocation algorithms
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Method

• Virtual memory – separation of user logical memory 
from physical memory.
Only part of the program needs to be in memory for 

execution.
Logical address space can therefore be much larger than 

physical address space.
Allows address spaces to be shared by several processes.
Allows for more efficient process creation.

• Virtual memory can be implemented via:
Demand paging 
Demand segmentation
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Characteristics of Paging and Segmentation

• Memory references are dynamically translated into 
physical addresses at run time
 a process may be swapped in and out of main  memory 

such that it occupies different regions

• A process may be broken up into pieces (pages or 
segments) that do not need to be located 
contiguously in main memory

• Hence: all pieces of a process do not need to be 
loaded in main memory during execution
 computation may proceed for some time if the next 

instruction to be fetch (or the next data to be accessed) is 
in a piece located in main memory
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Principle of Locality

• Program and data references within a process tend to cluster
• Only a few pieces of a process will be needed over a short 

period of time
• Possible to make intelligent guesses about which pieces will be 

needed in the future
• This suggests that virtual memory may work efficiently

Temporal locality
Spatial locality
Branch locality
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Support Needed for Virtual Memory

Hardware 
must support paging and/or segmentation 

Operating system 
must be able to management the movement of pages and/or 

segments between secondary memory and main memory
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Page Table

Paging: Mechanisms

A page table maps logical 
pages to physical frames
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Address Translation

• Mapping from logical address space to physical 
memory space
MM: L->P
Each process has its own mapping

• How memory management achieves isolation?
Each concurrent process is mapped to disjointed physical 

space

• How to support sharing (e.g., shared libraries)?
Shared segment (or page) of two or more processes is 

mapped to the same physical address

• If translation fails: memory exception
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Memory Exceptions

Must be dealt with in all memory models
 Memory access issues in MMU

When do memory exceptions happen?
 Contiguous Allocation: address out-of-bound (LIMIT)
 Segmentation: address out-of-bound
 Segmentation: segmentation number doesn’t exist
 Paging: page not mapped to a frame

What happens when there is memory exception?
 MMU will raise the exception line in CPU
 CPU will jump to the corresponding exception handler (an kernel 

subroutine pre-registered to this exception type)
 Now up to the handler to do what is necessary (like kill the 

process, or do something else)
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Outline

• Principle of Locality & Address Translation
• Virtual Memory

• Demand Paging
• Page Fault Handling

• Mechanisms for Implementing VM
• Local Page Replacement
• Global Page Replacement
• Belady Phenomenon
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Virtual Memory

Problem: how can one support running programs that 
requires more memory than the computer’s physical 
main memory?

The concept of virtual memory
Process views memory by logical (virtual) address space
Only part of the logical address space needs to be in main 

memory at a given time
Other parts may be in secondary storage (e.g., disk)
The resident place may change dynamically (on-demand)
Secondary storage can be viewed as an “extension” of 

physical memory
Abstraction: “infinite” amount of main memory!
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Virtual Memory Concept

Hardware

OS abstraction: Address Space
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Demand Paging: a Mechanism for VM

• Based on the Paging model
Some pages are mapped to frames in main memory
Some pages are not (but in secondary storage)
Page table entry has a flag (resident bit) to denote 

which case
 If CPU needs to access an address in a page that is not 

in main memory, the whole page should be loaded in 
memory first

• Demand paging memory management
OS should maintain the mapping and know where each 

page is stored in secondary storage
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Resident Bit in Page Table

    A valid/invalid bit in the 
page table entry 
 If page is mapped to a 

frame in main memory, 
the page is resident (or 
the entry is “valid”)

MMU translates as usual
Otherwise: the entry is 

invalid.
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What if a Page is not in Main Memory

• Demand paging
 If CPU access an address of a page that is not in memory
 OS must load the page from secondary storage into a frame in 

main memory (before CPU can access the page)

• Step 1: find a frame for this page
 Most likely there is not free frame
 Find a frame in use and replace the content
 Involve replacement policy (which page to replace)
 May involve writing content to secondary storage

• Step 2: load the content of the page
 Update the page table with new mapping (Page->Frame)
 CPU can now access the page

• Q: How does OS know?
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Page Fault Handling

• CPU jumps to the exception handler (an OS kernel subroutine pre-
registered to page fault exception)
Check if it is really a valid/legal location in logical address space

If not, send memory fault signal or abort process
Pick a page/frame to swap out (may involve write I/O)
Request a read I/O for the missing page (secondary storage)
Block the process and put in waiting state (why?)

Call scheduler (to schedule other processes)
• In interrupt handler (upon above I/O finishes)

Maps the missing page into memory (i.e., update the page table)
Resume the faulting process (put to ready state)
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Page Fault Handling
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Outline

• Principle of Locality & Address Translation
• Virtual Memory
• Mechanisms for Implementing VM

Dirty Bit
Backing Store
Virtual Memory Performance

• Local Page Replacement
• Global Page Replacement
• Belady Phenomenon
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Mechanisms for Implementing VM

• Demand paging
Based on paging
Bring a page into memory only when it is needed
Page fault: mechanism to implement demand 

paging
• Other mechanisms

Demand segmentation
Swapping (of the whole process)

• Replacement policy
Selecting which page (or segment, or process) to 

be replaced
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Dirty Bit

• Another flag in page table entry
Whether the page has had write access since it is 

mapped to the main memory
 If yes, the page is called a “dirty” page

• A dirty page must be written to secondary storage 
when it is picked for replacement
May slow down the access to a missing page

• A pager program may run in the background and 
periodically “clean” the dirty pages in memory
According to some strategy
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Backing Store

Where to keep the unmapped pages?
Must be easy to identify the pages in secondary storage
Swap space (partition or file): specially formatted for 

storing the unmapped pages

The concept of backing store
A page (in virtual address space) can be mapped to a 

location in a file (in secondary storage)
Code segment: mapped to the executable binary file
Dynamically loaded shared library segment: mapped to 

the dynamically loaded library file
Other segment: may be implicitly mapped to swap file
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Virtual Memory Performance

To understand the overhead of paging, compute the 
effective memory access time (EAT) 
 EAT = memory access time     *  probability of a page hit +                
                 page fault service time *  probability of page fault

Example:
Memory access time: 10 ns
Disk access time: 5 ms
Let p = the probability of a page fault
Let q = the probability of a dirty page
EAT = 10(1–p) + 5,000,000p(1+q)     ?
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Recap of Virtual Memory Management

Key concept: Demand paging 
Load pages into memory only when a page fault occurs

Issues:
Placement strategies

Place pages anywhere – no placement policy required 

Replacement strategies
What to do when there exist more jobs than can fit in memory

Load control strategies
Determining how many jobs can be in memory at one time
Long-term scheduling
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System Design Exercise

• Many computer architecture maintain 4 bits per TLB 
entries: resident, used, dirty, read-only
Will raise exception if write access to read-only page

• Suggest how you can do that in OS
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Outline

• Principle of Locality & Address Translation
• Virtual Memory
• Mechanisms for Implementing VM
• Local Page Replacement

• Optimal Page Replacement 
• FIFO
• Least Recently Used (LRU)
• Clock algorithm (Second Chance Algorithm)
• Enhanced Clock algorithm

• Global Page Replacement
• Belady Phenomenon
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Page Replacement: Concept

• Typically memory needs for concurrent processes total 
greater than physical memory

• With demand paging, physical memory fills quickly
• When a process faults & memory is full, some page must 

be swapped out
 Handling a page fault now requires 2 disk accesses not 1!
 Though writes are more efficient than reads (why?)

• Which page should be replaced?
 Local replacement   — Replace a page of the faulting process
 Global replacement — Possibly replace the page of another 

process
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Evaluation methodology

Record a trace of the pages accessed by a process
 Example: (Virtual) address trace (Page Num, Offset)...

 (3,0),  (1,9),  (4,1),  (2,1),  (5,3),  (2,0),  (1,9),  (2,4),  (3,1),  (4,8)
 generates page trace

 3, 1, 4, 2, 5, 2, 1, 2, 3, 4  (represented as c, a, d, b, e, b, a, b, c, d)

Simulate the behavior of a page replacement and record the 
number of page faults generated
 fewer faults, better performance
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Optimal Page Replacement (Clairvoyant)

Replace the page that won’t be needed for the longest time in 
the future
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FIFO

Simple to implement
 A single pointer suffices

Performance with 4 page frames:
 Assuming initial a->b->c->d order
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Least Recently Used (LRU) Page Replacement

Replace the page that hasn’t been referenced for the longest 
time
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Implementing LRU with Stack

Maintain a “stack” of recently used pages
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Implementing LRU with Aging Register

• Maintain an n-bit aging register R = Rn-1Rn-2…R0 for each 
page frame
 On a page reference, set Rn-1 to 1
 Every T units of time, shift the aging vector right by one bit
 Why not use a monotonically increasing reference count?

• Key idea: 
 Aging vector can be interpreted as a positive binary number
 Value of R decreases periodically unless the page is referenced

• Page replacement algorithm: 
 On a page fault, replace the page with the smallest value of R
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Approximate LRU: The Clock algorithm

• Maintain a circular list of pages resident in memory
 Use a clock (or used/referenced) bit to track how often a page is accessed 
 The bit is set (to 1) whenever a page is referenced

• Clock hand sweeps over pages looking for one with used bit = 0
 Replace pages that haven’t been referenced for one complete revolution 

of the clock

func Clock_Replacement
begin
while (victim page not found) do
  if(used bit for current page = 0) then
          replace current page (& set used bit to 1)
  else
          reset used bit (to 0)
  end if
     advance clock pointer
end whileend Clock_Replacement

resident bit
used bit 
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1
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Enhanced Clock algorithm

• There is a significant cost to replacing “dirty” pages

• Modify the Clock algorithm to allow dirty pages to always 
survive one sweep of the clock hand
 Use both the dirty bit and the used bit to drive replacement

resident bit
used bit 
dirty bit
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Outline

• Principle of Locality & Address Translation
• Virtual Memory
• Mechanisms for Implementing VM
• Local Page Replacement
• Global Page Replacement

• Working Set Page Replacement
• Page-Fault-Frequency Page Replacement
• Load Control

• Belady Phenomenon
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Introducing Global Page Replacement

• Local page replacement
LRU — Ages pages based on when they were last used
FIFO — Ages pages based on when they’re brought into 

memory

• Towards global page replacement ... with variable 
number of page frames allocated to processes
The principle of locality argues that a fixed number of frames 

should work well (over short intervals).
Programs need different amounts of memory at different times.
 allow a process’s memory allocation to grow (and shrink) over 

time.
determine what this number of frames is (what we’ll later call 

the “working set”).
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Optimal Replacement with Variable Frames

Replace a page that is not referenced in the next τ accesses.    

Example: τ = 4

c c d b c e c e a  d

Faults

P
ag

es
in

 M
em

or
y Page a

Page b
Page c
Page d

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e

t = 0

t = -1



46

The Working Set Model

• Assume recently referenced pages are likely to be 
referenced again soon…

• ... and only keep those pages recently referenced 
in memory (called the working set)
Thus pages may be removed even when no page fault 

occurs
The number of frames allocated to a process will vary 

over time

• A process is allowed to execute only if its working 
set fits into memory
The working set model performs implicit load control
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Working Set Page Replacement

Keep track of the last τ references

  The pages referenced during the last τ memory accesses 

are the working set,  τ is called the window size.    

Example: τ = 4 references:
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Page-Fault-Frequency Page Replacement

An alternate working set computation
Explicitly attempt to minimize page faults

 When page fault frequency is high — increase working set
 When page fault frequency is low  — decrease working set

Algorithm: 
Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, tlast, of the last page fault

If the time between page faults is “large” then reduce the working set

If tcurrent – tlast> , then remove from memory all pages not referenced in 
[tlast,  tcurrent ]

If the time between page faults is “small” then increase working set

If tcurrent – tlast ≤  , then add faulting page to the working set
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Page-Fault-Frequency Page Replacement

Example: window size = 2
 If tcurrent – tlast>2, remove pages not referenced in [tlast, tcurrent ] from the 

working set
 If tcurrent – tlast ≤ 2, just add faulting page to the working set

tcur – tlast
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Load  Control: Fundamental  tradeoff

High multiprogramming level

Issues
 What criterion should be used to determine when to increase or 

decrease the MPL?
 Which task should be swapped out if the MPL must be reduced?

Low paging overhead
 MPLmin = 1 process

minimum number of frames required for a process to execute

number of page frames
 MPLmax=
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Load Control: How not to do it

Base load control on CPU utilization?
Assume memory is nearly full
A chain of page faults occur

 A queue of processes forms at the paging device
 CPU utilization falls
 Operating system increases MPL 
 New processes fault, taking memory away from existing processes
 CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/ODevice

...

Paging
Device

CPU
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1.0

CPU
Utilization

Multiprogramming Level

Load Control: Thrashing

Thrashing can be ameliorated by local page replacement
Better criteria for load control: Adjust MPL so that:

 mean time between page faults (MTBF)  = page fault service time 
(PFST)

 WSi  = size of memory

Nmax NI/O-BALANCE

MTBF
PFST

1.0
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Outline

• Principle of Locality & Address Translation
• Virtual Memory
• Mechanisms for Implementing VM
• Local Page Replacement
• Global Page Replacement
• Belady Phenomenon
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Belady Phenomenon 
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Belady Phenomenon 
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Belady Phenomenon 
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How about Clock /Second Chance Page Replacement ?
Why LRU Page Replacement has no Belady Phenomenon? 

Frame Size: 3     Page Fault: 10 Frame Size: 4     Page Fault: 8


