
1

Operating Systems

 Department of Computer Science & Technology
 Tsinghua University

 Lecture 9: CPU Scheduling

2

Outline

Background
Ø CPU scheduling
Ø CPU Scheduling Time

Scheduling Criteria
Scheduling Algorithms
Real-Time Scheduling
Multiprocessor Scheduling
Priority Inversion

3

OS Mechanisms for Time Multiplexing

Context switch
Ø Switch CPU’s current task, from one process/thread to another
Ø Save the execution context (CPU state) of the current

process/thread in PCB/TCB
Ø Load the context of the next process/thread

CPU scheduling
Ø Pick a process/thread from the Ready queue to execute next in

CPU
Ø Scheduler: a kernel function that returns the pick (according to

some scheduling policy)
Ø When?

4

When do you call scheduler?

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

When in the process/thread life cycle?

5

CPU Scheduling Time

The kernel runs the scheduler at least when
Ø a process switches from running to waiting,
Ø a process is terminated.

If non-preemptive
Ø The scheduler must wait for one of these events

If preemptive
Ø The scheduler runs after and interrupt is serviced
Ø Current process from running to ready, or a process from waiting

to ready
Ø Current running process can be switched out

6

Outline

Background
Scheduling Criteria

Ø Scheduling Policy
Ø Program Execution Model
Ø Criteria for Comparing Scheduling Algorithms
Ø Throughput vs. Latency
Ø The “Fairness” Goal

Scheduling Algorithms
Real-Time Scheduling
Multiprocessor Scheduling
Priority Inversion

7

Scheduling Policy

Which one (in the Ready queue) to pick?
Ø The first one? Or according to some criteria?

Scheduling policy
Ø Determines how the OS should select a process from the ready

queue to execute?
Ø Goal and options

Scheduling algorithm
Ø Implementation of a policy in CPU scheduler

Which policy/algorithm is better?

8

The CPU Bursts Model

Execution model: programs alternate between bursts of
CPU and I/O
Ø Each scheduling decision is about which job to give to the CPU for

use by its next CPU burst
Ø With timeslicing, thread may be forced to give up CPU before

finishing current CPU burst

9

Criteria for Comparing Scheduling Algorithms

CPU Utilization
Ø The percentage of time that the CPU is busy

Throughput
Ø The number of processes completing in a unit of time

Turnaround time
Ø The length of time it takes to run a process from initialization to

termination, including all the waiting time
Waiting time

Ø The total amount of time that a process is in the ready queue
Response time

Ø Amount of time it takes from when a request was submitted until the first
response is produced.

10

Throughput vs. Latency

People often say they want “faster" service.
What is faster?
Ø If they transfer files, then they want large bandwidth
Ø If they play games, they probably want low latency
Ø These two factors are separate

Analogy to water pipes
Ø Low latency: if I want a drink, I want water to come out of the

spout as soon as I turn it on
Ø High bandwidth: if I wan to fill up a swimming pool, I want a lot

of water coming out of that spout at the same time, and I don't care
if it takes long before I see the first drop

11

CPU Scheduling Policy Goals

Minimize response time
Ø provide output to the user as quickly as possible and process their

input as soon as it is received.
Minimize variance of average response time
Ø in an interactive system, predictability may be more important than

a low average with a high variance.
Maximize throughput - two components
Ø minimize overhead (OS overhead, context switching)
Ø efficient use of system resources (CPU, I/O devices)

Minimize waiting time
Ø Minimize the time each process waits for its turn

12

Other considerations

Scheduling for low latency maximizes interactive
performance
Ø This is good because if my mouse doesn't move, I might reboot the

machine
But the OS needs to make sure that throughput does not
suffer
Ø I want my long running programming to finish, so the OS must

schedule it occasionally, even if there are many interactive jobs
Throughput is computational bandwidth.
Response time is computational latency.

13

The “Fairness” Goal

What is the definition of fairness
Example
Ø Ensuring each process occupies same amount of CPU time
Ø Fair? What if a user runs more processes than another?

Example
Ø Ensuring each process waits the same amount of time

Fairness often increases average response time

14

Outline

Background
Scheduling Criteria
Scheduling Algorithms
Real-Time Scheduling
Multiprocessor Scheduling
Priority Inversion

15

Scheduling Algorithms

FCFS
Ø First Come, First Served

SJF
Ø Shortest Job First

Priority Scheduling
Ø User denotes process priority

Round Robin
Ø Use a time slice and preemption to alternate jobs.

Multilevel Feedback Queues
Ø Round robin on priority queue.

Lottery Scheduling *
Ø Jobs get tickets and scheduler randomly picks winning ticket.

Stride Scheduling *
Ø Jobs get tickets and scheduler determinately picks winning ticket.

WFQ *
Ø Weighted Fair Queuing

16

First-Come-First-Served (FCFS)

The discipline corresponding to FIFO queuing
Ø If a process blocks while executing, CPU is given to next in queue

Example — 3 processes w/ compute times 12, 3, 3
Ø Job arrival order P1, P2, P3

Ø Job arrival order P2, P3, P1

17

FCFS (cont’d)

Pro
Ø Simple!

Con
Ø Average waiting time is highly variable
Ø Short jobs may wait behind long ones !!
Ø May lead to poor overlap between I/O and CPU processing

⣡ CPU bound processes will make I/O bounds processes to wait, when
I/O devices remain idle

18

Shortest-Job-First (SJF)

Select the shortest job first
Ø Enqueue jobs in order of estimated completion time

Can be preemptive or non-preemptive
Ø Preemptive: aka. Shortest-Remaining-Time-First

Head

Tail

19

SJF - Advantage

Provably optimal mean waiting time
Ø Consider an SJF execution of a set of processes

20

SJF - Disadvantage

Possible starvation
Ø Continuous stream of short jobs will starve long jobs
Ø Any CPU time to long jobs when short jobs are available will

always degrade average waiting time

Need to know the future
Ø How do you estimate the duration of next CPU burst?
Ø Simple solution: ask the user! (Yeah, right!!)
Ø Kill the process if the user cheats
Ø What if the user doesn’t know?

21

SJF - Estimating Execution Time

Recent history is a good indicator of the near future

22

Estimating Execution Time

23

Priority Scheduling (PS)

Assign a priority (a number) to each job and schedule jobs
in order of priority
Ø Typically low priority numeric values = “high priority”
Ø If priority is τn , then a priority scheduler becomes a SJF

Disadvantage: Starvation
Ø Low priority processes may never execute

Aging: avoiding starvation
Ø Gradually increase a process’s priority (decrease its priority

numeric value) over time

24

Round-Robin (RR)

Allocate the processor in discrete unit called quantum (or
timeslice)
Switch to the next ready process at the end of each
quantum
Ø Processes execute every (n – 1)q time units

25

Example RR with Time Quantum = 20

Example:ProcessBurst Time
P1 53
P2 8
P3 68
P4 24
Ø The Gantt chart is:

Ø Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20

P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

Ø Average waiting time = (72+20+85+88)/4=66¼

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 2028 48 68 88 108112125 145153

26

RR – Selecting a Time Quantum

RR overhead: additional context switches
Time quantum too large

Ø Long waiting time
Ø Degenerates to FCFS in the limit

Time quantum too small
Ø Responsive, but …
Ø Throughput suffers due to large context switch overhead

Goal:
Ø Select a time quantum that balances this tradeoff
Ø Rule of thumb: maintain context switch overhead to <1%

27

Exercise: Comparing FCFS and RR

Example:ProcessBurst Time
P1 53
P2 8
P3 68
P4 24
Ø Assuming context-switch time is zero
Ø What is the average wait time under FCFS or RR?

Quantum P1 P2 P3 P4 Average

RR (q=1)
RR (q=5)
RR (q=8)

RR (q=10)
RR (q=20)
Best FCFS

Worst FCFS

28

Exercise: Comparing FCFS and RR

Example:ProcessBurst Time
P1 53
P2 8
P3 68
P4 24
Ø Assuming context-switch time is zero
Ø What is the average wait time under FCFS or RR?

Quantum P1 P2 P3 P4 Average

RR (q=1) 84 22 85 57 62
RR (q=5) 82 20 85 58 61.25
RR (q=8) 80 8 85 56 57.25

RR (q=10) 82 10 85 68 61.25
RR (q=20) 72 20 85 88 66.25
Best FCFS 32 0 85 8 31.25

Worst FCFS 68 145 0 121 83.5

29

How to Evaluate a Scheduling Algorithm

Deterministic modeling
Ø takes a predetermined workload and compute the performance of

each algorithm for that workload

Queuing models
Ø Mathematical approach for handling stochastic workloads

Implementation/Si
mulation:
Ø Build system which

allows actual
algorithms to be run
against actual data.
Most
flexible/general.

30

Multi-level Queues

Ready queue is partitioned into separate queues:
Ø E.g. foreground (interactive), background (batch)

Each queue has its own scheduling algorithm
Ø E.g. foreground – RR, background – FCFS

Scheduling must be done between the queues
Ø Fixed priority

⣡ Serve all from foreground then from background
⣡ Possibility of starvation

Ø Time slice
⣡ Each queue gets a certain amount of CPU time which it can schedule

amongst its processes
⣡ E.g. 80% to foreground in RR, 20% to background in FCFS

31

Multi-level Feedback Queues (MLFQ)

A process can move between the various queues
Example: n priority levels — priority scheduling between
levels, round-robin within a level
Ø Quantum size increases with priority level
Ø Jobs are demoted to next priority levels if they don’t complete

within the current quantum

32

Approximating SJF with MLF

CPU bound jobs drop quickly in priority
I/O bound jobs stay at a high priority

33

Lottery Scheduling

Give every job some number of lottery tickets
On each time slice, randomly pick a winning ticket
On average, CPU time is proportional to the number of
tickets given to each job
To approximate SJF
Ø Assign tickets by giving the most to short running jobs, and fewer

to long running jobs
Ø To avoid starvation, every job gets at least one ticket.

Degrades gracefully as load changes
Ø Adding or deleting a job affects all jobs proportionately,

independent of the number of tickets a job has

34

Lottery Scheduling Example

Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A

10/1 9.9% 0.99%
1/10 50% 5%

35

Summary of Traditional Scheduling Algorithms

FCFS
Ø Not fair, and poor average waiting times

SJF/SRTF/Priority Scheduling
Ø Not fair, but average waiting time is minimized
Ø Requires accurate prediction of computation times
Ø Starvation is possible

Priority Scheduling
Ø Represent user intention

Round Robin
Ø Fair, but poor average waiting times

MLFQ
Ø An approximation to SJF

Lottery Scheduling
Ø Fairer with a low average waiting time, but less predictable

Stride Scheduling
Ø A deterministic solution for fairness

36

Fair Scheduling Algorithms

Processes are assigned weights
Fairness: processes receive CPU in proportion to their
weights

Quantum-based CPU scheduling:

Ø where U(p,q) is the unfairness measure
Ø Objective: achieve small unfairness measure

37

Weighted Fair Queuing (WFQ)

Emulate a fluid-flow model using an instruction-by-
instruction weighted round robin server

Schedule processes in the finish order in the weighted
round robin server
Caveat: emulation is expensive !

38

Outline

Background
Scheduling Criteria
Scheduling Algorithms
Real-Time Scheduling
Ø Real-Time Systems
Ø Schedulability
Ø Rate Monotonic(RM)
Ø Earliest Deadline First(EDF)

Multiprocessor Scheduling
Priority Inversion

39

Real-Time Systems

Definition
Ø Systems whose correctness depends on their temporal aspects as

well as their functional aspects

Performance measure
Ø Timeliness on timing constraints (deadlines)
Ø Speed/average case performance are less significant.

Key property
Ø Predictability on timing constraints

40

Real-Time Scheduling

Hard real-time systems
Ø required to complete a critical task within a guaranteed amount of time

Soft real-time computing
Ø requires that critical processes receive priority over less fortunate ones

41

Real-Time Workload

Job (unit of work)
Ø a computation, a file read, a message transmission, etc

Attributes
Ø Resources required to make progress
Ø Timing parameters

Released
Absolute
deadline

Relative deadline

Execution time

42

Real-Time Task

Task : a sequence of similar jobs
Ø Periodic task (p,e)

⣡ Its jobs repeat regularly
⣡ Period p = inter-release time (0 < p)
⣡ Execution time e = maximum execution time (0 < e

< p)
⣡ Utilization U = e/p

5 1
0

150

43

Deadlines: Hard vs. Soft

Hard deadline
Ø Disastrous or very serious consequences may occur if the deadline

is missed
Ø Validation is essential : can all the deadlines be met, even under

worst-case scenario?
Ø Deterministic guarantees

Soft deadline
Ø Ideally, the deadline should be met for maximum performance.

The performance degrades in case of deadline misses.
Ø Best effort approaches / statistical guarantees

44

Schedulability

Property indicating whether a real-time system (a set of
real-time tasks) can meet their deadlines

(4,1)

(5,2)

(7,2)

45

Real-Time Scheduling

Determines the order of real-time task executions
Static-priority scheduling
Dynamic-priority scheduling

(4,1)

(5,2)

(7,2)
5

5

10

10 15

15

46

RM (Rate Monotonic)

Optimal static-priority scheduling
It assigns priority according to period
A task with a shorter period has a higher priority
Executes a job with the shortest period

(4,1)

(5,2)

(7,2)
5

5

10

10 15

15

T1

T2

T3

47

EDF (Earliest Deadline First)

Optimal dynamic priority scheduling
A task with a shorter deadline has a higher priority
Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)
5

5

10

10 15

15

T1

T2

T3

48

RM vs. EDF

Rate Monotonic
Ø Simpler implementation, even in systems without explicit support

for timing constraints (periods, deadlines)
Ø Predictability for the highest priority tasks

EDF
Ø Full processor utilization
Ø Misbehavior during overload conditions

For more details: Buttazzo, “Rate monotonic vs. EDF:
Judgement Day”, EMSOFT 2003.

49

Outline

Background
Scheduling Criteria
Scheduling Algorithms
Real-Time Scheduling
Multiprocessor Scheduling
Priority Inversion

50

Multiprocessor Scheduling

CPU scheduling more complex for multiprocessors
Ø Homogeneous processors within a multiprocessor
Ø Benefit: load sharing

Asymmetric multiprocessing – only one processor runs the
kernel, others run user mode programs
Ø Only one CPU accesses the system data structures, alleviating the

need for data sharing
Symmetric multiprocessing (SMP)
Ø Each processor runs own scheduler
Ø Need synchronization among schedulers

Symmetric multithreading
Ø Create multiple logical processors on the same physical processor

(sounds like two threads)

51

Aim of Multiprocessor Scheduling

Assignment of processes to processors
Use of multiprogramming on individual processors
Actual dispatching of a process

52

Assignment of Processes to Processors

Treat processors as a pooled resource and assign process to
processors on demand
Permanently assign process to a processor
Ø Known as group or gang scheduling
Ø Dedicate short-term queue for each processor
Ø Less overhead
Ø Processor could be idle while another processor has a backlog

53

Outline

Background
Scheduling Criteria
Scheduling Algorithms
Real-Time Scheduling
Multiprocessor Scheduling
Priority Inversion

54

Priority Inversion

Can occur in any priority-based preemptive scheduling
scheme
Occurs when circumstances within the system force a higher
priority task to wait for a lower priority task

55

Unbounded Priority Inversion

Duration of a priority inversion depends on unpredictable actions of
other unrelated tasks

56

Priority Inheritance

Lower-priority task inherits the priority of any higher priority task
pending on a resource they share

57

Priority Ceiling Protocol

Priority Ceiling: a binary semaphore is the highest priority
of all of the tasks that may lock it.
 A task attempting to a execute critical section is blocked
unless its priority is higher than the priority ceilings of all
of the locked semaphores in the system.
 The task holding the lock on the highest priority ceiling
semaphore inherits the priorities of tasks blocked in this
way.

58

(the first time)

time = 0.125 s

bc_sched

bc_dist

bus active

What really happened on Mars?

Two tasks were critical for controlling communication on
the lander’s communication bus, the scheduler task
(bc_sched) and the distribution task (bc_dist).
Each of these tasks checked each cycle to be sure that the
other had run successfully.

59

Mars Pathfinder: The Problem

bc_dist was blocked by a much lower priority
meteorological science task (ASI/MET)
ASI/MET was preempted by several medium priority
processes such as accelerometers and radar altimeters.
bc_sched started and discovered that bc_dist had not
completed. Under these circumstances, bc_sched reacted
by reinitializing the lander’s hardware and software and
terminating all ground command activities.

60

Mars Pathfinder: Resolution

“Faster, better, cheaper” had NASA and JPL using
“shrink-wrap” hardware (IBM RS6000) and software
(Wind River vxWorks RTOS).
Logging designed into vxWorks enabled NASA and Wind
River to reproduce the failure on Earth. This reproduction
made the priority inversion obvious.
NASA patched the lander’s software to enable priority
inheritance.

61

Mini Lesson on System Design

1. Separate mechanism from policy
Ø In this case: thread mechanism should allow context switch at any

time, so we can use any policy we want
2. Know your goals

Ø There must be trade-off of one goal against another
Ø Explicitly write down your goals

3. Compare against optimal (even if you don’t know how to
build optimal for real system)
Ø Provides reference to compare against (don’t waste your time if

you are already at 99% of optimal)
Ø Provides insight used to understand other algorithms (under what

circumstances will I not be optimal?)

