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What is a Process?

An OS abstraction that supports running programs
Π Basic unit of execution in an operating system

A process is a program during execution.
Π Program = static file (image)
Π Process = executing program = program + execution state.

Different processes may run several instances of the same 
program

Π I run ls, you run ls – same program, different processes

At a minimum, process execution requires following 
resources:

Π Memory to contain the program code and data
Π A set of CPU registers to support execution
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From Program to Process

We write a program in e.g., C.
A compiler turns that program into an instruction list.
A linker builds an executable file (code + data)
A loader loads the executable file into memory (make ready to run)

void X (int b) {
   if(b == 1) {
…
int main() {
  int a = 2;
  X(a);
}

Code

Header

Initialized data

Executable FileSource Code

Compile+Link
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Process in Memory

void X (int b) {
  if(b == 1) {
…
int main() {
  int a = 2;
  X(a);
}

What you wrote What is in memory.

void X (int b) {
  if(b == 1) {
…
int main() {
  int a = 2;
  X(a);
} Code

main; a = 2

X; b = 2

Heap

Stack
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Anatomy of a Process

Code

Header

Initialized data

Executable File Code

Initialized data

Heap

Stack

DLL’s

mapped segments

Process’s 
address space

Load
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Keeping track of a process in OS

A process has code.
Π OS must track program counter (code location).

A process has a stack.
Π OS must track stack pointer.

OS stores state of processes’ computation in a 
process control block (PCB).

Π E.g., each process has an identifier (process identifier, 
or PID)

Data (program instructions, stack & heap) resides 
in memory, metadata is in PCB.
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Process Control Block

Code

Initialized data

Heap

Stack

DLL’s

mapped segments

Process’s 
address space

PC
SP

Other Registers
PID
UID

Scheduling Priority
List of open files

…

PC
SP

Other Registers
PID
UID

Scheduling Priority
List of open files

…

PCB
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Processes and Process Management
Details for running a program

A program consists of code and data

On running a program, the loader:
Π reads and interprets the executable file
Π sets up the process’s memory to contain the code & data from executable
Π pushes “argc”, “argv” on the stack
Π sets the CPU registers properly & calls “_start()” 

Program starts running at _start()
_start(args) {

ret = main(args);
exit(ret)

}
we say “process” is now running, and no longer think of “program”

When main() returns, OS calls “exit()” which destroys the process and 
returns all resources
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Process Life Cycle

Processes are always either Running, Ready (to execute) or 
Waiting (for an event to occur)

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone
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Process Life Cycle

Process is created at Start and transitions to Ready when it 
becomes runnable

ReadyReady

StartStart
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Process Life Cycle

Process transitions from Ready to Running when kernel 
schedules it

RunningRunningReadyReady

StartStart
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Process Life Cycle

Process transitions from Running to Waiting when it is 
blocked, waiting for an event to occur (e.g., waiting for an 
I/O to finish)

RunningRunningReadyReady

WaitingWaiting

StartStart
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Process Life Cycle

Process transitions from Waiting to Ready when the event 
occurs (e.g., I/O completion)

RunningRunningReadyReady

WaitingWaiting

StartStart
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Process Life Cycle

Process transitions from Running to Ready on an interrupt 
and pre-emptive scheduling

RunningRunningReadyReady

WaitingWaiting

StartStart
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Process Life Cycle

Process transitions from Running to Done on exit()

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone
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Example Process State Transition

What happens on a sleep() system call?

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone
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Process Contexts (process sleep)

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...
Program 1 Program 2OS

I/O
Device

k: sleep()

k+1:

add_timer()

Time arrive interrupt

main{

main{

}

sleep{

}

}

schedule()

Memory

save
state
save
state schedule()

restore
state

restore
state

save
state
save
state
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 Thread-Level Parallelism
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The Notion of Concurrency

“Thread” of execution
 Sequential execution of a stream of instructions at a CPU

Uniprogramming: one thread at a time
 Early OS (MSDOS, etc.)

Multiprogramming: multiple threads at a time
 Modern OS
 Sometimes called “multitasking”

The basic problem of concurrency: multiplexing
 Hardware: limited set of resources (CPU, memory, I/O)
 Multiprogramming: each thread thinks it owns the whole thing
 OS has to manage concurrency
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Managing Space

Hardware

OS abstractions: Address Space, Virtual Memory

P1

P2

P3

Kernel

Operating System

0 232

0 232

0 232

0 232

Cache MMU

0 m M>>m

isolation
sharingOS Memory Management Subsystem
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Managing Time

TimeHardware

OS abstraction: Process, Thread

P1

P2

P3

Kernel

Operating System

system call (user I/O)

interrupt (I/O done)

interrupt exception

interrupt (timer)

waiting ready

readyready

ready

ready

waiting

OS Process Management Subsystem
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Before …

Process = Program + Execution State
 Process is a sequential execution in its own address space

PCB (Process Control Block)
 Kernel data structure to manage processes

Process life cycle
 Ready, Running, Waiting

Context and context switch
 Save the execution state

API
 fork() and exec()

RunningReady

Waiting

Start Done

unused
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Two Concepts in a “Process”

The “Process” abstraction
 Process is a sequential execution in its own address space
 It combines two concepts: concurrency and protection

Concurrency
 A “thread” of execution independent of other processes

Protection
 Each process defines an address space, which identifies all 

addresses that can be touched by the process

From Process to Thread
 Thread: a sequential execution of a program (or a stream of 

instructions), in some address space
 Separate the concepts of concurrency from protection
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The Concept of Thread

An OS abstraction
 A sequential execution of a stream of instructions

Resources associated with thread
 Program Counter (PC), Stack Pointer (SP), plus a set of other CPU 

registers & flags
 Each thread must have its own stack

CPU registers

PC SP

stream
 of instructions

stack…      …
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Single and Multithreaded Processes

Maximum one thread per process (address 
space)
Example: traditional Unix (no concept of 
thread)
But doesn’t prevent user to add own thread 
support in user program (user-level threading)

Support more than one threads 
per process
A single program made up of a 
number of different concurrent 
activities



30

From Process to Thread

Roughly, Process = Thread(s) + Address Space
 One or more threads in a single address space
 Thread: encapsulate concurrency
 Address space: encapsulate protection

Usually need OS support for threads
 Managing threads
 Scheduling/switching among threads

Example systems that support threads:
 OS-supported: Sun’s LWP, POSIX’s threads
 Language-supported: Modula-3, Java, ErLang
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Thread States

Individual state for each thread
 CPU registers (must save/restore during context switch)
 Stack (how do we save/restore this?)

Shared by all threads in a process
 Contents of memory (MMU translation states)
 I/O states
 Other OS book keeping data (open files, network connections, etc)

Threads are lightweight (c.f. process)
 No thread-specific heap or data segment (unlike process)
 Therefore, context switching between threads is much cheaper than 

for a process
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Example Multithreaded Programs

Server programs
 Web servers, file servers, network servers, database servers, 

application servers, etc.
 Why multithreading? concurrent requests from network, from 

concurrent users, etc.

Embedded systems
 Elevators, machines, etc.
 Single program, multiple concurrent operations

Operating system kernel?
 Yes for most modern OS
 Have to deal with concurrent requests
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Multithreading

Why multithreaded programs?
 Single program, multiple concurrent operations
 Have to serve multiple requests, multiple users
 Take advantage of algorithmic parallelism

Technology trend: concurrent programming
 The world is going multi-core
 Parallel programming: split program into multiple threads for 

performance gain

Multiple threads or multiple processes?
 Depends.
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Web Server Example

Non-threaded version
Loop {

block for new connection;
ForkNewProcess(WebServer, new_connection);

}

Threaded version
Loop {

block for new connection;
ForkNewThread(new_connection);

}

Advantages
 Share file caches kept in memory, results of CGI scripts, etc. 
 Low per-request overhead (threads are much cheaper to create than 

process)
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Threads vs. Processes

Threads
No data segment or heap

Multiple can coexist in a 
process
Share code, data, heap and I/0
Have own stack and registers, 
but no isolation from other 
threads in the same process
Inexpensive to create
Inexpensive context switching

Processes
Have data/code/heap and other 
segments
Include at least one thread

Have own address space, 
isolated from other processes’

Expensive to create
Expensive context switching
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Thread Implementations

Kernel multithreading
 Operating system supports multiple threads per process
 OS kernel manage and schedule the threads

User-level multithreading
 User program implements its own threading with some user-space 

threading library
 System may or may not have kernel threading, but kernel does not 

know about the user-level threads

Chip-level multithreading
 Architecture (Hardware) support for multithreading
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Kernel Threading

New kernel data structure: TCB (Thread Control Block)
 Execution state: PC, SP, CPU registers
 Scheduling info: lifecycle, priority, etc.
 Pointer to enclosing process (PCB)
 Plus others

Like process, thread has state (in lifecycle) and will be 
scheduled by CPU scheduler
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Threads’ Life Cycle

Threads (just like processes) go through a sequence of start, ready, 
running, waiting, and done states 

RunningReady

Waiting

Start Done

unused
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Implementing Thread Support in OS Kernel

PCB contains process-
specific information 
 Owner, PID, heap pointer, 

priority, active thread, and 
pointers to thread information

TCB contains thread-
specific information
 SP, PC, CPU registers thread 

state, pointer to PCB, …

Code

Initialized data

Heap

DLL’s

mapped segments

Process’s 
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for 
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for 
Thread2
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Implementing Threads

CreateThread(pointer_to_procedure, arg0, …) {
// allocate a new TCB and stack
  TCB tcb = new TCB();
     Stack stack = new Stack();
// initialize TCB and stack with initial register values and address of first 

instruction
tcb.pc = Stub;
tcb.stack = stack;
tcb.arg0reg = pointer_to_procedure;
tcb.arg1reg = arg0; 

 …
// Tell the dispatcher about the newly created thread

ReadyQ.add(tcb);
}

Stub(proc, arg0, arg1, …) {
(*proc)(arg0, arg1, …);
DeleteCurrentThread();

}
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Summary of Threads

Process

Kernel
data
structure

PCB

TCB

PCB

TCB TCBTCB

PCB PCB
Single-threading 

OS kernel

Multi-threading 
OS kernel

(virtually all modern OS)
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User-level Threading

Motivation
 Threads are a useful programming abstraction
 Implement thread creation/scheduling using procedure calls to a 

user-level library rather than system calls

User-level threading
 User-level library implementations for

尌 CreateThread(), DestroyThread(), Yield(), …
 User-level library performs the same set of actions of 

corresponding system calls
 Main difference: thread management is under the control of user-

level library

What happens if a user-level thread makes a system call?
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User-level Threading

Process

Kernel
data
structure

PCB

TCB

PCB
Single-threading

OS kernel

Multi-threading 
OS kernel

thread lib
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User-level Threading

Benefits:
 Faster context switch (no need to cross into kernel)
 Thread scheduling is more flexible

尌 Can use application-specific scheduling policy 
尌 Each process can use a different scheduling algorithm
尌 Threads voluntarily give up CPU

Drawbacks:
 OS is unaware of the existence of user-level threads

尌 Poor scheduling decisions
尌 If a user-level thread waits for I/O – entire process waits

 OS schedules processes independent of number of threads within a 
process
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User-level Threading vs Kernel Threading

User-level threading
 OS does not know about user-level threads
 OS is only aware of the process that contains threads
 OS schedules processes, not threads
 Programmer uses a threads library to manage threads (create, 

delete, synchronize and schedule)

Kernel threading
 OS knows and tracks kernel threads
 Switching threads within same process is inexpensive
 Kernel uses process scheduling algorithms to manage threads
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Scheduler Activations (best of both worlds)

Why not a user level thread scheduler that spawns a kernel 
thread for blocking operations?
 But how do we know if an operation will block?
 read() might block, or data might be in page cache.
 Any memory reference might cause a page fault to disk.

Solution : Scheduler Activations
 Kernel tells user when a thread is going to block, via an upcall.
 Kernel can provide a kernel thread to run the user-level upcall 

handler (or preempt user thread).
 User-level scheduler suspends blocking thread and can give back 

kernel thread it was running on.
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Thread Pools

Control multiprogramming level
 Maintain a bounded “pool” of worker threads (controlling the 

maximum number of threads)

Web server example
Master:

loop {
wait until an incoming connection
equeue(q, new_connection);
wakeup(q);

}

Worker:
loop {

waiton(q);
new_connection = dequeue(q);
service  new_connection;

}
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Thread or Process Pool

Creating a thread or 
process for each unit of 
work (e.g., user request) is 
dangerous
 High overhead to create & 

delete thread/process
 Can exhaust CPU & 

memory resource

Thread/process pool 
controls resource use
 Allows service to be well 

conditioned.

Load

Th
ro

ug
hp

ut

Well conditioned
Not well conditioned
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Context Switch

Stop current running process (move from Running 
to another state) and schedule another process (put 
to Running state)

Π Must save various portions of the process context 
before switching.

Π Must be able to restore them later so that the process 
cannot tell that it was ever suspended.

Π Must be fast (context switches are very frequent)
What context needs to be saved?

Π Registers (PC, SP, …), CPU states, …
Π Sometimes can be time-consuming and we should 

avoid if possible
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Context Switch Illustration
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Keeping Track of Processes

OS has PCBs for active processes.
OS puts PCB on an appropriate queue.

Π Ready to run queue.
Π Waiting for I/O queue (Queue per device).
Π Zombie queue.
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Outline
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• fork()
• exec()
• wait()
• exit()
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How Do Programmers Use Processes?

How to build a fast, multi-process web server
Π Main process waits for a network connection
Π Main process accepts connection.  OS represents open connection 

with a FILE DESCRIPTOR
Π Main process starts a new process for this connection
Π Main process must pass new process the file descriptor for the 

open connection

Simple CreateProcess system call is insufficient
Π Process is program + process state
Π Process state can be as little as initial stack contents, or anything in 

the PCB (open files, network connections, security credentials)
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The Genius of Separating Fork/Exec

Life with CreateProcess(filename);
Π But I want to close all file descriptors in the child. 
CreateProcess(filename, CLOSE_FD);

Π And I want to change the child’s environment. 
CreateProcess(filename, CLOSE_FD, new_envp);

Π Etc.
fork() = split this process into 2 (new PID)
exec() = overlay this process with new program               

(PID does not change)
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The Genius of Separating Fork/Exec

Decoupling fork and exec lets you do anything to the 
child’s process environment without adding it to the 
CreateProcess API.
int pid = fork(); // create a child
if(pid == 0) { // child continues here
     // Do anything (unmap memory, close net connections…)

exec(“program”, argc, argv0, argv1, …);
}
fork() creates a child process that inherits:

Π identical copy of all parent’s variables & memory
Π identical copy of all parent’s CPU registers (except one)

Parent and child execute at the same point after fork() returns:
Π for the child, fork() returns 0
Π for the parent, fork() returns the process identifier of the child
Π fork() return code a convenience, could always use getpid()
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main {
  int childPID;
  S1;
  
  childPID = fork();

  if(childPID == 0)
    <code for child process>
  else {
     <code for parent process>
     wait();
   }
  
  S2;
 }

Unix fork() example

The execution context for the child process is a copy of the parent’s 
context at the time of the call

Π fork() returns child PID in parent, and 0 in child

CodeCode

DataData

StackStack

CodeCode

DataData

StackStack

Parent Child

fork()

childPID
= 0

childPID
= 0

childPID
= xxx

childPID
= xxx



60

General Purpose Process Creation

In the parent process:
main()
…
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);
     printf(“Why would I execute?”);
}
else { // parent continues here
    printf(“Whose your daddy?”);
    …
   child_status = wait(pid);
}
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C Program Forking Separate Process

int main()
{
Pid_t  pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}



62

pid = 127
open files = “/bin/sh”
last_cpu = 0

pid = 128
open files = “/bin/sh”
last_cpu = 0

A shell forks and then execs a calculator

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

pid = 128
open files = “/bin/calc”
last_cpu = 0

Process Control
Blocks (PCBs)

OS

USER

int pid = fork();
if(pid == 0) {
 exec(“/bin/calc”);
} else {
 wait(pid);

int calc_main(){
  int q = 7;
  do_init();
  ln = get_input();
  exec_in(ln);
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pid = 127
open files = “/bin/sh”
last_cpu = 0

pid = 128
open files = “/bin/sh”
last_cpu = 0

A shell forks and then execs a calculator

int shell_main() {
  int a = 2;
  … Code

main; a = 2

Heap

Stack

0xFC0933CA
int shell_main() {
  int a = 2;
  … Code

main; a = 2

Heap

Stack

0xFC0933CA
int calc_main() {
  int q = 7;
  … Code

Heap

Stack

0x43178050

pid = 128
open files = “/bin/calc”
last_cpu = 0

Process Control
Blocks (PCBs)

OS

USER
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Program Loading: exec()

The exec() call allows a process to “load” a different 
program and start execution at main (actually _start).

It allows a process to specify the number of arguments 
(argc) and the string argument array (argv).

If the call is successful
Π it is the same process …
Π but it runs a different program !!

Code, stack & heap is overwritten
Π Sometimes memory mapped files are preserved.
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At what cost, fork()?

Simple implementation of fork():
Π allocate memory for the child process
Π copy parent’s memory and CPU registers to child’s
Π Expensive !!

In 99% of the time, we call exec() after calling fork()
Π the memory copying during fork() operation is useless
Π the child process will likely close the open files & connections
Π overhead is therefore high
Π Why not combine them in one call (OS/2, Windows)?

vfork()
Π a system call that creates a process “without” creating an identical 

memory image
Π sometimes called lightweight fork()
Π child process should call exec() almost immediately
Π No use now if we use Copy on Write  (COW) technology
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The wait() System Call

A child program returns a value to the parent, so the parent must 
arrange to receive that value

The wait() system call serves this purpose
Π it puts the parent to sleep waiting for a child’s result
Π when a child calls exit(), the OS unblocks the parent and returns the value 

passed by exit() as a result of the wait call (along with the pid of the child)
Π if there are no children alive, wait() returns immediately
Π also, if there are zombies waiting for their parents, wait() returns one of 

the values immediately (and deallocates the zombie)
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Orderly Termination: exit()

After the program finishes execution, it calls exit()
This system call:

Π takes the “result” of the program as an argument
Π closes all open files, connections, etc.
Π deallocates memory
Π deallocates most of the OS structures supporting the process
Π checks if parent is alive:

 If so, it holds the result value until parent requests it; in this case, process does 
not really die, but it enters the zombie/defunct state

 If not, it deallocates all data structures, the process is dead
Π cleans up all waiting zombies

Process termination is the ultimate garbage collection (resource 
reclamation).
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Process Control

OS must include calls to enable special control of a process:

Priority manipulation:
Π nice(), which specifies base process priority (initial priority)
Π In UNIX, process priority decays as the process consumes CPU

Debugging support:
Π ptrace(), allows a process to be put under control of another process
Π The other process can set breakpoints, examine registers, etc.

Alarms and time:
Π Sleep puts a process on a timer queue waiting for some number of 

seconds, supporting an alarm functionality
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Tying it All Together: The Unix Shell

while(! EOF) {
read input
handle regular expressions
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

 Translates <CTRL-C> to the kill() system call with SIGKILL

 Translates <CTRL-Z> to the kill() system call with SIGSTOP

 Allows input-output redirections, pipes, and a lot of other stuff that we will see 
later


